
Processes and automation

ELO Automation Services



4

4

6

6

7

12

14

20

28

28

34

35

40

68

68

72

78

82

87

90

90

94

94

95

97

99

100

100

105
105

106

109

110

116

Table of contents

Basics

How ELOas works 

Rulesets

Basics 

Create ruleset via ELO Administration Console 

Options and error handling 

Manual start of a ruleset 

The rule structure 

Programming

Programming with ELO Automation Services 

ELOas JavaDoc 

Debugging 

Standard modules 

Examples

Example – Moving a document 

Example: e-mail folder monitoring 

Example – migrating a document database 

Example - Treewalk for ELOas 

Example - Workflow processing 

Filing via ELO Dropzone

ELOas filing via ELO Dropzone tiles 

Barcode

Introduction 

Reading barcodes with the Softek library 

Reading barcodes with the ZXing library 

Creating barcodes with the ZXing library 

Debugger

ELOas debugger 

Debugger (Java FX)
Opening the program 

User interface 

Starting an ELOas rule 

Profiles 

Keyboard shortcuts 

2 Processes and automation



117

120

121

121

129

133

Java libraries 

ELOas debugger on Linux 

Other topics

Manual installation of ELOas 

Installing multiple ELOas instances 

Installing ELOas libraries 

3 Processes and automation



Basics

How ELOas works 

ELOas is a servlet that can post-process any number of ELO documents in a background process.

This includes applying metadata from other data sources, moving documents, or setting up filing

structures. Thanks to this flexibility, a number of other functions can also be created via the

integrated JavaScript interface.

Forming the basis for processing, a ruleset consists of an XML configuration created via a graphical

user interface in the ELO Administration Console. Multiple rulesets can be defined, which are

executed in sequence with their own interval controls ("Every 10 minutes", "Daily at 1 PM", "Every

3rd day of the month"). Furthermore, the ruleset contains a search query and a sequence of rules

for processing data.

Fig.: Rules folder in ELO

ELOas activates every ruleset in its list within "ELOas\Rules" in a rotating sequence. For each

ruleset, ELOas first checks whether the interval condition is met (has it been at least 10 minutes

since it last was run?). If it isn't met, the next ruleset is processed. If, however, the execution time

4 Processes and automation



has been reached, the specified search is performed. The ruleset now runs for each entry in the

results list. You can change the target in ELO, enter metadata, or perform other actions here. Next,

the document is saved and the following entry is processed until the end of the list of results has

been reached. Finally, the new execution time is calculated and the server processes the next

ruleset.

Additional rulesets can easily be added via the graphical user interface. Just as with changed

rulesets, they only become active once the configuration is reloaded.

The XML configuration of the rules and the JavaScript code can be saved in a document file instead

of on the Extra text tab of the metadata. In this case, you will see text files instead of folders for

child entries in the tree.

An additional type of ruleset was introduced for ELOwf: the direct function call. These rulesets are

created in their own folder called Direct, run in their own thread, and return a direct result. For this

reason, they must not be defined with an interval, but must rather be created with a trigger (0

minutes: use 0M as interval). Additionally, you should only execute short actions here, as the called

process has to wait for a result and cancels it after a specified timeout.

Search methods (index search, treewalk, task list, mailbox, timestamp) 

ELOas is mainly designed to process a list of results from an index search. Over time, additional

options have been added, which can be selected by naming the SEARCHNAME correspondingly.

TREEWALK: The object ID or ARCPATH to the start object is configured in SEARCHVALUE. It runs

through the entire branch, and the ruleset is called for each entry with the corresponding metadata

form.

WORKFLOW: All of the ELOas user's workflow tasks are read and the ruleset is called for each entry

with the corresponding metadata form. The ruleset can also forward the workflow.

MAILBOX_<Profile name>: A connection to the e-mail server is established using the profile name,

and the mailbox contents are read and processed. The ruleset is called for each e-mail message in

the mailbox with an empty document.

DIRECT: This ruleset can be called via http-get and returns a direct result. Rulesets of this type can

only be defined in the Direct folder and not in Rules, as they have to be executed in another

thread.

TIMESTAMP: This call performs a search following the last change. Normally, you enter a range as

the search term: "2012.01.01.00.0.00… 2012.01.31.23.59.59".

5 Processes and automation



Rulesets

Basics 

The program executes rules at regular intervals to carry out defined tasks in ELO.

Rules are written in JavaScript and are executed by the Indexserver at specified intervals.

Rule processing 

The program first searches for objects in ELO that match the rule definition.

The rule is applied to all elements found in ELO.

Information

The setting for the documents to be searched is defined in the search fields.

If a rule does not match, it cannot be applied or executed. An error message appears.

The defined rules are filed in ELO under Administration > Rules.

Information

Rules are split into two parts in the ELO Administration Console. In the Rules area, you will

find the box Rule 1, where the steps to be executed are described. It contains information

about what to do with each object found. The Global error rule box defines what should

happen if errors occur.

1. 

2. 

1. 

6 Processes and automation



Create ruleset via ELO Administration Console 

In the ELO Administration Console, you create new rulesets in the ELO Automation Services area.

Fig.: 'ELO Automation Services' menu item

Add (green plus icon): Click the Add button to create a new ruleset.

Information

Once you have saved it, the new ruleset is stored in the Rules folder of ELO. You can

configure the rulesets in the Rules area.

Reload data from server (yellow circle arrow icon): Click the Reload data from server button to

reload the area.

Delete (red X icon): Click the Delete button to delete the selected ruleset.

7 Processes and automation



Fig.: New ruleset

Name: The name of the ruleset that you entered when you created the rule is shown here. The

name can be modified later.

Please note

Not all characters are allowed. Refer to the following list.

¶

"

/

\

:

;

,

Search form: Select the search form that will be used to find documents to be processed.

Index search: Select a group field to search across different fields.

Search term: Enter the character string you want to search for here. All documents in ELO that

correspond to the defined rules will be selected in accordance with the rules and criteria defined in

the wizard. The character string must be entered in quotation marks.

Search max: Enter the maximum number of search results here.

• 

• 

• 

• 

• 

• 

• 

8 Processes and automation



Advanced search 

From filing date ... to: You can narrow down the search here by selecting a specific filing date or a

filing period.

From date ... to: You can narrow down the search here by selecting a specific date or period.

Target forms for rules selection 

Add target form: This is where you can select the metadata form for the target folder that moved

documents are filed to.

Interval control 

In the Interval control area, you define how often you want to run ELO Automation Services.

Fig.: 'Interval control' area

Start: This input box contains script code that will be executed before running the ruleset.

End: This box contains script code that will be executed after running the ruleset.

Includes 

Add Include library: In the Add Include library field, you can add any script libraries that you need

to the ELOas rule.

9 Processes and automation



Rules 

Fig.: 'Rules' area

This rule will be applied to all entries found in ELO. This is where you define settings such as where

documents are moved.

Add (green plus icon): Add a new rule. The rules will be processed in sequence.

Name: Enter a name for the rule.

Condition: The query rule is defined here to check the status of a field, for example.

In this menu, you can select a script, e.g. to move files to the file system. Scripts are filed to the

administration area of ELO Automation Services in ELO.

Please note

The configuration in your repository can differ from the illustrations shown here.

Filing path: Specify where you want to file the document to. Use the button at the end of the input

field to enter separator characters for paths in ELO.

Target form: Select the metadata form for the document.

Fields: You can replace the content of fields in the metadata of the target documents here.

Information

If you switch to the Script tab, you make all the rule settings using a script. If you do so, you

can no longer access the Rule tab.

Error handling 

You can define the basic settings for handling errors in the Global Error Rule area. This rule is

executed when an error occurs in a general rule.

10 Processes and automation



Fig.: Defining basic error handling

Name: The name of the error handling routine is entered here.

Condition: A condition for an error rule is defined here.

Filing path: Set the filing path of the error report in the repository here.

Target form: Select the metadata form of the document with the error log.

Fields: This option enables you to define individual fields that you can assign a specific character

string on filing.

Please note

If a ruleset is invalid, it cannot be saved. The validity of a ruleset is verified when saving.

11 Processes and automation



Options and error handling 

Pause rules 

You can trigger and stop individual rulesets via a link in the browser.

You can access the ELO Automation Services status page via the respective ELO Application Server

manager or via the URL with the following structure:

http(s)://<server name>:<port>/as-<repository name>/?cmd=status

Fig.: Deactivate a rule with a stop link

If the user clicks Stop, the running process is stopped for the corresponding ruleset. Click Start to

restart the process.

Please note

The status page updates automatically every 10 seconds. After clicking Start or Stop, this

command will be sent every 10 seconds. In normal operation, this does not cause any

problems. However, if you have the same status page open in multiple browser windows,

you may encounter problems or unexpected behavior if you enter different settings to the

different windows.

12 Processes and automation



Error message "Invalid Ruleset" 

Problem 1 

ELO Automation Services (ELOas) runs but the following error message is displayed in the log file: 

Invalid Ruleset suspended: org.xml.sax.SAXException: Invalid ruleset definition: Premature end of

file.

Even though the rules are defined correctly (correct spelling, no error while parsing the xml

document in the browser), the file cannot be read by ELO Automation Services, i.e. the request

takes place but an empty document is triggered (as can be seen by the empty lines of the log file)

and an error message appears. Check whether the ELOas user has sufficient rights. Check whether

the ELO Indexserver and Document Manager of the repository in question have errors in their log

files. You can test the rule with another client. Instead of saving the script in a .txt file in the Rules

folder, save it as a separate folder in Rules (in the extra text of the folder) so that the script is

regarded as a database entry.

Another approach is to check whether the latest version of ELO Automation Services is in use and

whether the following entry exists in the XML file under <installation path>\config\as-<repository

name><name of server instance>\config.xml:

<entry key="tempdir"> ... </entry>

This temporary directory must exist, as otherwise an error message will appear. The user must

have write access to the temp directory at the system level.

Problem 2 

When creating a second rule, not every group field is available in the drop-down menu on the first

attempt.

In this case, you need to close and start the ELO Administration Console again. Warning: This does

not apply for the first rule you created!

13 Processes and automation



Manual start of a ruleset 

Normally, ELOas executes the defined rulesets based on intervals. However, there are processes

that are so complex in their execution that they cannot be run in short intervals. Still, they must

become active as quickly as possible after a certain change has taken place. There is an option to

manually execute a ruleset through a URL (or rather, via script).

If you execute rules via an "HTTP-GET" or "HTTP-RUN" command in ELOas 20, they need to be

validated with a ticket. You need to attach a valid ticket to the corresponding ELOas URL, e.g:

http://localhost:9060/ELOas/actions?

cmd=get&name=test&ticket=935666A2E27D8AB642C4C40AFAEAE2B9

You can turn off the internal ticket validation with the new ELOas configuration parameter 

checkTicket.

Fig.: config.xml

Important

Using ELOas in proxy mode with disabled ticket validation poses a security risk, especially if

the ELO Indexserver is available on the Internet.

Example 

The following example shows how to call a ruleset from a client script, which then changes specific

objects.

14 Processes and automation



Warning: As the call takes place via http access, any user can trigger this action from the browser

or via a script command. For this reason, you need to ensure that the function cannot be misused

(such as by verifying the user number or through a fixed internal preset of the object ID).

First, the ruleset in use must be considered. By entering an interval of 0 minutes (<interval>0H</

interval>), this ruleset will be defined as triggered manually. Thus, it will not be called cyclically,

but will rather wait until a specific URL is received.

The interesting part is found in the script area:

<ruleset>

    <base>

        <name>Expand Name</name>

        <search>

            <name>"OBJIDS"</name>

            <value></value>

            <mask>2</mask>

            <max>200</max>

        </search>

        <interval>0H</interval>

    </base>

<rule>

    <name>Expand Name</name>

    <condition></condition>

    <script>

        log.debug("Param1: " + EM_PARAM1);

        log.debug("UserId: " + EM_USERID);

        NAME = "Approved: " + NAME;

        EM_WRITE_CHANGED = true;

    </script>

</rule>

<rule>

    <name>Global Error Rule</name>

    <condition>OnError</condition>

    <script></script>

</rule>

</ruleset>

15 Processes and automation



The call can provide up to three parameters. These can be queried from the ruleset using the

variables EM_PARAM1, EM_PARAM2, and EM_PARAM3. In addition, the script can optionally provide the

ticket of the current login for authentication. In this case, the number of the logged on user is

entered to the variable EM_USERID. If no user has been authenticated, the number -1 is entered. In

the first parameter, one or more object IDs can be transferred. These will then overwrite the search

value from the ruleset definition. In this case, "OBJIDS" must be specified as the name for the

metadata field.

In the example, the short name of the selected object is preceded with the text "Approved". Any

other changes to the SORD object can be made here.

As the object has been changed, it should also be saved.

Activating the ruleset 

After starting ELOas, this ruleset is started, but not yet active. It waits for an external trigger

(visible by the text "Trigger" in the Next run field).

<script>

    log.debug("Param1: " + EM_PARAM1);

    log.debug("UserId: " + EM_USERID);

NAME = "Approved: " + NAME;

EM_WRITE_CHANGED = true;

</script>

16 Processes and automation



Fig.: ELOas status page

The trigger is either initiated from a URL, or from the Windows Client by using a script command

(starting with version 7.00.056 of the client):

The SendELOasRequest command performs an asynchronous call with run. Such rulesets are shown

in the ELO Administration Console under Rules, instead of Direct.

Server name Name or IP address of the ELOas server.

Port number Port number of the ELOas server. Normally 8080, standard http port.

Service name

Service name of the ELOas server. In a standard installation, it is created by

combining the prefix "as-" and the repository name (e.g. as-ELO). However, make

sure to use the correct capitalization, as otherwise the Tomcat server will return

an error.

With ticket 0. Do not send logon information

SendELOasRequest( <server name>, <port number>, <service name>, <with ticket>, <ruleset name>, <parameter 1>, <pa

17 Processes and automation



1: Send current ticket as logon information. In this case, ELOas checks the ticket

and identifies the user number. This information is provided to the ruleset. The

ruleset can then decide whether and to what extent the action will be run.

The logon information for SSO cannot be evaluated at present. This will be

changed in the next version of the ELO Indexserver.

Ruleset Name
Name of the ruleset to be run. Only triggered rulesets can be called in this way.

The call is ignored for interval-controlled rulesets.

Parameter1
First parameter. If this parameter is not empty, it is used as a search term when

the ruleset is run.

Parameter2,

Parameter3

Additional optional parameters. These can be queried by the ruleset and control

how it is run.

The complete sample script for such a call could therefore look like the following. It calls the 

Expand Name ruleset for the objects with ObjId 7944 and 7945.

The ruleset can also be triggered from any other application by calling a URL:

http://localhost:8084/ELOmover/as?

cmd=run&amp;name=Expand%20Name&amp;param1=7944,7945&amp;param2=TestParam2

Please note

In this case, you cannot transfer any authentication information. Ensure in your ruleset that

the action cannot be misused.

Other notes 

Triggering rulesets asynchronously 

When a ruleset is triggered by a URL or a script call, ELOas runs it asynchronously. Thus, if another

ruleset is currently active, script execution will not be delayed for as long as it takes for ELOas to

become available again. Instead, the activation command is placed in a queue and then run at the

next opportunity.

This has two consequences: first, the client script cannot assume that the operation has actually

been performed just because the command has been processed. If this is important for the further

course of the script, it must be checked by the script itself and integrated into the queue. However,

please note that a situation may occur where ELOas is also processing other very complex actions

at the same time. Generally, a script should therefore not wait for the completion of an ELOas

action.

Set Elo=CreateObject("Elo.Professional")

MsgBox Elo.SendELOasRequest("localhost", 8084, "/ELOmover/as" , 1, "Expand Name", "7944,7945", "TestParam2", "")

18 Processes and automation



It is also possible that an impatient user may initiate the trigger multiple times. In this case, the

ruleset will also be run multiple times. For this reason, it is necessary to ensure that repeat

triggering does not lead to errors, such as by checking the object in advance and then canceling

any repeated runs.

Triggering rulesets asynchronously also leads to another problem: Errors that occurred while

processing the ruleset cannot be reported using the script call.

Triggering rulesets synchronously 

With synchronous triggering, the ruleset is initiated directly and can also return a result.

Synchronous triggering is used primarily by ELO workflows (form editor). With the call, cmd=get is

required instead of cmd=run. In addition, the rulesets for the synchronous call must not be placed in

the Rules folder, but rather in the Direct folder. Synchronous rulesets are run independently from

the asynchronous ruleset in their own thread.

Permissions check 

When being called from the ELO Windows Client, the client authentication ticket can be optionally

transmitted as well. In this case, ELOas can check the login and ascertain the current user. For

critical actions, a test to determine whether it is being run by a user with sufficient rights must be

performed. If no user is logged in or the user does not have sufficient rights, execution should be

canceled.

However, in certain cases, anonymous triggering may be completely acceptable, such as when a

specific predefined object is being edited. This is the case, for example, when a specific predefined

object is being edited. In this case, care should be taken to ensure the ObjectId cannot be changed

by the call. This can most easily take place in an onstart event by setting the value 

EM_SEARCHVALUE in the script. In this case, the preset value from the ruleset script is used for the

search instead of the parameter.

Order of operations 

A manually triggered ruleset inserts itself quite normally to the order of operations for the rulesets.

If multiple triggers have been activated for a ruleset, all triggers are processed first before the next

ruleset is processed.

19 Processes and automation



The rule structure 

This section describes the XML rule structure in ELOas. Normally, this structure is maintained using

a graphical user interface or GUI. If you have to make manual changes, you can use this

description as a reference. At the same time, this description serves as a reference for

implementing the GUI.

General structure 

The complete structure is embedded in the <ruleset> tag. This consists of two parts: a <base>

entry at the beginning, followed by any number of <rule> entries.

The <base> entry contains the information to search for the entries to be processed. These include

the search rows, the search term, forms, and date restrictions.

The <rule> entries contain one processing instruction each. You can assign each rule a condition,

change the filing target, or change the contents of the fields. Additionally, a rule can also have

JavaScript contents. If defined as such, the other entries are ignored, but they can have values.

If the condition of a rule is "OnError", this rule is processed as an error handling rule. An error

handling process can take place after every rule, and at the very end an error handling rule must

be entered. These final error rules are called if an error occurs when moving or saving a file. If an

error occurs during processing within a normal rule, the next possible error handling rule is called

and processing is canceled.

Example of a simple ruleset:

<ruleset>

    <base>

        <name>Name of the ruleset</name>

        <search>

            <name>Metadata field name in JavaScript code</name>

            <value>Search term in JavaScript code.</value>

            <mask>Number of the metadata form for the search.</mask>

        </search>

        <interval>5M</interval>

    </base>

    <rule>

        <name>Name of the rule</name>

        <destination mask="Folder form"> New target in JavaScript Code</destination>

        <index>

            <name>Metadata field name in JavaScript code</name>

            <value>New contents of the metadata field in JavaScript code</value>

        </index>

    </rule>

    <rule>

20 Processes and automation



All entries in the <base> section

Tag Function Example

name
Name of the ruleset. This name is displayed on the status page, but

is not processed further.
SAP processing

search

Parameter for searching for the documents to be processed. For a

description, see the following section All entries in the '<search>'

section

masks

If you have to switch to another metadata form during the course of

processing, all possible target form (mask) numbers have to be listed

here. Each form number is framed with a <mask> tag.

<mask>3</

mask><mask>4</

mask>

interval

Repetition interval for processing the search. This interval can be

entered in minutes (5M) or hours (1H). Further, it can also be run

once a day at a specific time (15:30), once per week (17:20/SA), or

once a month (22:00/31). If a day is specified for monthly execution

that does not exist for the current month (e.g. the 31st of February),

the last day of the month is used instead.

5M1H15:3017:20/

SA22:00/31

All entries in the '<search>' section

The entries in the <search> section determine which documents are processed. At the start of each

pass, a search is performed with these parameters. The list of results is processed according to the

rules.

Day Function Example

name

Metadata field name in JavaScript code If the name is fixed,

text can be entered directly in quotation marks. However, any

JavaScript expression can be used as well.

"ELOOUTL2"

value

Search term in JavaScript code. If the value is fixed, text can

be entered directly in quotation marks. However, any

JavaScript expression can be used as well.

"ELO*"

        <name>Name of the error handling rule</name>

        <condition>OnError</condition>

    </rule>

</ruleset>

<search>

<name>Metadata field name in JavaScript code</name>

<value>Search term in JavaScript code</value>

<mask>Number of the metadata form for the search.</mask>

<max>Maximum number of documents per pass</max>

</search>

21 Processes and automation



Day Function Example

mask

Number of the metadata form for the search. Only a metadata

form can be used here, and not a pure search form, as it is

assumed that all matches have the same form definition

during read-in.

2

max

Maximum number of documents per pass sending a search

query to the ELO Indexserver. If more matches exist, they are

processed in a later pass after all other rulesets have been

run. This prevents an extensive ruleset from suppressing the

processing of all other rulesets. A maximum of 1000

documents per pass are allowed.

200

idatexdate

The list of results can be restricted through a date range in the

filing date (idate) or document date (xdate). This date can

either be entered in absolute values in the ISO date format

(YYYYMMDD) or in values relative to the current day (-5). The

range consists of a start date in a <from> tag, and an end date

in a <to> tag.

<idate><from>-5</

from><to>+0</to></

idate>

All entries in the '<rule>' section 

After the <base> section, any number of <rule\> sections can follow. These are run in the order of

the definition during processing.

A rule can exist in two different forms: as a normal rule and as an error rule. Such an error rule is

simply skipped in the normal course of events. The next available error rule is only called in case of

an error, and afterwards the processing of this document is canceled. This means that after an

error rule is processed, no further rules will be processed.

The last rule in the <rule\> chain must always be an error rule. This ensures that error handling is

always available in every case. Additionally, this rule is called if an error occurs while moving or

saving a file.

Tag Function Example

name
Name of the rule, only be used for documentation and

to better understand its function.
Additional indexing

condition

Processing condition for the rule. If this is an error rule,

the fixed text "OnError" is entered here. Note that it

must be written exactly in this way, as otherwise the

rule will not be recognized as an error rule.

KDNR == "123"

The execution condition is provided in the form of

JavaScript code. The rule is only run if the condition is

"true".

22 Processes and automation



Tag Function Example

destination

New filing target of the document as the repository

path. This entry is optional and can remain empty. In

this case, the document remains in its original position.

If there are multiple destination rules, the first target is

used as a new filing location, and all additional targets

are entered as references to the first.

<destination mask="1">

¶ELO¶Mails¶" + ELOOUTL1</

destination>

If a filing target does not yet exist, it is created

automatically.

The destination tag can also contain an additional

"mask" attribute with the number of the folder

metadata form for newly created folders. If this attribute

is not available, "1" is used by default, which is the

number of the folder form in a standard repository.

mask

New document metadata form If this entry is not

available or the form number is -1, the original

metadata form is retained.

<mask>20</mask>

If the form is changed, all entries are automatically

applied with the same group name. This is also

executed correctly if the metadata fields are divided up

differently between forms.

If the original metadata form contained fields that the

new form does not have, this data is automatically

discarded without returning an error message.

ELOas cannot process documents with metadata forms

that use the same group names for multiple entries, as

the internal processing and structure of the rules

assume a unique assignment.

index

Any number of index entries can exist within a rule Each

index entry contains the name of the relevant field and

a JavaScript expression with the new value.

<index><name>DOCDATE</

name> <value>"20070930"</

value></index>

Fields with an ISO date and fields for the filing and

document date also require the in ISO date format.

In addition to the fields with the group names of the

search form, all group names of the alternative

metadata forms are available, as well as a number of

pseudo-fields with standard values for metadata:

NAME: Short name

DOCDATE: Document date

ABLDATE: Filing date

ARCHIVINGMODE: Document status 0, 1, or 2 for

"Version control disabled", "Version control enabled", or

"Non-modifiable".

23 Processes and automation



Tag Function Example

ACL: With "PARENT", apply the ACL of the new filing

target. With <rights>:<name>, define any number of

group rights.

OBJCOLOR: Color number of the entry

OBJDESC: Extra text

OBJTYPE: Document or folder type of the entry.

Information: An incorrect assignment can lead to

disruptions in further processing. Documents can only

have an OBJTYPE between 254 and 286.

script

A rule can also contain JavaScript code to be run. In this

case, all other parameters of this rule are ignored, but

they can be retained, e.g. for documentation purposes.

Changing permissions 

Changed permissions can be configured in the ACL pseudo-metadata field. In the simplest case,

enter "PARENT" here, which will then apply the rights of the target folder to this entry when it is

saved. However, a complete list of rights can also be configured here. This list consists of a

sequence of individual rights that are separated by a pilcrow symbol. Each individual right consists

of the rights form (RWDELP - read, write, delete, edit, list, permissions), followed by a colon and

the group name. For AND groups, enter a sequence of names, each separated by a colon, instead

of the simple group name.

In the example, the Everyone group has read access, the Controlling group has read and write

access, and the AND group Administration and Stuttgart and Management has full access to the

document.

If you want to set rights for a user instead of for a group, add "U" to the list of rights as well.

Notes 

When generating the JavaScript code, all group names of the search form and the alternative

metadata forms are entered as variables in all caps. This method minimizes the risk of group

names overlapping with standard identifiers from JavaScript or the ELO runtime environment. In

principle, however, it can lead to problems if one of the group names is identical to a standard

identifier or one of the translation lists.

R:Everyone¶RW:Controlling¶RWDELP:Administration:Stuttgart:Management

UR:Administrator

24 Processes and automation



Information

This list may be expanded in the course of project process. In particular, it can be expanded

with additional entries through local customizing.

The number of the metadata form for the current document can be changed using a rule. However,

if this results in an invalid form number or a number that does not exist in the list of alternative

target forms, this will cause a runtime error when saving the document, and not when assigning

the form.

If an error rule is called due to a runtime error, it will delete all already allocated filing targets of

the previously processed rules. If the error rule does not have its own <destination>, the

document remains at its original position. Otherwise, the target of the error rule is used.

Changed metadata is moved and saved at the end, after the last rule is processed. If this leads to

an error, the last error rule is called, and not the error rule that belongs to the rule defining the

target (which is, indeed, identical to what occurs when there is only a single error rule).

Sample structure 

The following provides a sample definition, along with a list of the code generated from it. This

information is for orientation purposes only.

var NAME;

var ARCDATE;

var DOCDATE;

var OBJCOLOR;

var OBJDESC;

var OBJTYPE;

var ARCHIVINGMODE;

var ACL;

var EM_PARENT_ID;

var EM_PARENT_ACL;

var EM_SEARCHNAME;

var EM_SEARCHVALUE;

var EM_SEARCHCOUNT;

var EM_SEARCHMASK;

var EM_IDATEFROM;

var EM_IDATETO;

var EM_XDATEFROM;

var EM_XDATETO;

var EM_FOLDERMASK = "1";

<ruleset>

    <base>

25 Processes and automation



        <name>Thiele e-mail form</name>

        <search>

            <name>"ELOOUTL2"</name>

            <value>"Thiele*"</value>

            <mask>2</mask>

            <max>2</max>

            <idate>

                <from>"-35"</from>

                <to>"+1"</to>

            </idate>

        </search>

        <masks>

            <mask>12</mask>

            <mask>13</mask>

            <mask>20</mask>

        </masks>

        <interval>1M</interval>

    </base>

    <rule>

        <name>Rule 1</name>

        <destination mask="5">"¶Thiele¶E-mails¶" + ELOOUTL1</destination>

        <mask>20</mask>

        <index>

            <name>ADDENTRY</name>

            <value>getObjShort(2)</value>

        </index>

        <index>

            <name>ELOOUTL2</name>

            <value>"!!" + ELOOUTL2</value>

        </index>

        <index>

            <name>DOCDATE</name>

            <value>"20070930"</value>

        </index>

        <index>

            <name>ARCHIVINGMODE</name>

            <value>2</value>

        </index>

        <index>

            <name>ACL</name>

            <value>"PARENT"</value>

        </index>

    </rule>

26 Processes and automation



    <rule>

        <name>Journal copy</name>

        <destination mask="1">"¶Thiele¶Journals¶" + ELOOUTL1</destination>

    </rule>

    <rule>

        <name>Script rule</name>

        <script>

            moveTo(Sord, "¶Repository¶Targets1¶" + ELOOUTL1);

            moveTo(Sord, "¶Repository¶Targets2¶" + ELOOUTL2);

            moveTo(Sord, "¶Repository¶Targets3¶" + ELOOUTL3);

        </script>

    </rule>

    <rule>

        <name>Global Error Rule</name>

        <condition>OnError</condition>

        <destination>"¶Thiele¶Error"</destination>

        <index>

            <name>ELOOUTL2</name>

            <value>"!!" + ELOOUTL2</value>

        </index>

        <index>

            <name>ARCHIVINGMODE</name>

            <value>0</value>

        </index>

    </rule>

</ruleset>

27 Processes and automation



Programming

Programming with ELO Automation Services 

The chapter titled "Programming with ELO Automation Services" (ELOas) describes how to set up

and use the JavaScript Runtime Environment. This module enables you to run additional functions

in ELOas that are not available in the basic version.

Script execution 

The XML configuration of the ruleset is not only interpreted by ELOas. It is also translated when

imported to a JavaScript program and combined with the basic routines that are also available in

JavaScript. This script will then be run later. This has various advantages:

The assignments in the XML configuration can contain the whole range of JavaScript expressions

with any kind of function calls.

Any kind of JavaScript code sections with complex routines can be embedded in the XML

configuration.

The basic routines can be extended with all types of functions. These can then also be used by

administrators without programming knowledge, by simply calling the function within an

expression. Take the DB Access and Document Export modules for example.

The extended basic routines can also use any external Java libraries to increase the range of

functions (such as JDBC drivers, or even the IX client to directly control the ELO Indexserver).

28 Processes and automation



Fig.: 'JavaScript' directory

The major advantage of the basic functions in JavaScript is that these functions can be customized

or (preferably) added to within the project, without requiring ELOas itself to be changed. Thus, you

can work with a standard program, but adapt it to your requirements.

The basic installed version of ELOas includes the necessary basic functions to execute searches

and process rules (base templates, imports, and ELO utilities). This part should normally remain

unchanged. Only in special cases does it make sense to make changes here. Furthermore, it has

two modules for database access (DB Access) and exporting document files (Document Export). In

future versions, additional modules will be available. We also plan to set up a kind of online

exchange in the SupportWeb for ELOas modules for business partners.

In order to run such modules without any conflicts, a namespace concept has been developed,

which assigns each module its own namespace. Namespaces must always be written in lowercase,

as this could otherwise lead to conflicts with group names from the form definitions. All 2- and 3-

digit namespace names are reserved for ELO and are used for standard modules and released add-

ons. For custom modules, partners can use namespace names of four or more digits. If you create

a module that you only want to implement in one project, you can also use a one-digit name. The

module name in ELO must start with the namespace name, followed by a colon and a short

description (e.g. dex: Document Export). Internally, the namespace is implemented in a way that a

JavaScript object is created with the name of the namespace, and then all required functions of the

29 Processes and automation



module are assigned to this object. As this is ultimately a list, the individual functions are

separated with a comma instead of a semicolon.

These functions can then be addressed by the JavaScript code with dex.command1(x,y) or with 

dex.command2(). As every module has its own unique identifier, these can be combined without the

possibility of naming conflicts.

The Imports module has a special position among the basic modules. It is always placed at the

very start of the chain in the JavaScript program. This is therefore where the required Java library

imports should be placed. You can also configure global variables that are of general interest here.

As this module is a global module, it does not have a namespace.

Creating custom modules 

New custom modules can be created by the administrator by simply creating a new folder with the

name of the module within the ELOas\JavaScript folder. The actual JavaScript code is entered to the

folder's Extra text tab. Using permission controls in ELO, individual modules can be also enabled

and disabled by setting an ACL, which controls access for the ELOas account.

In each case, newly created or released modules only become active once the service has been

restarted or refreshed.

var dex = new Object();

dex = {

    command1: function(x,y) {

        …

    },

    command2: function() {

        …

    }

}

30 Processes and automation



Fig.: ELOas status page

Custom modules can contain any number of functions or global variables. As all modules must be

executed together within a JavaScript context, however, it is important to watch out for possible

namespace conflicts when naming them. Unfortunately, such conflicts will not be seen as errors by

the JavaScript interpreter and can therefore not be recognized automatically.

The objects of the custom module have an unlimited lifetime. After they are created, they remain

active until the service is ended or refreshed. This can be very problematic in some cases, such as

31 Processes and automation



with database connections. If a persistent connection is created at program start or first run and

then remains active for an unlimited time, this can lead to limited resources becoming reserved for

unnecessarily long times (such as when the ruleset only becomes active once a month). Or, even

worse, the resource could become invalid (e.g. due to a database server restart). Recognizing an

invalid service condition and initiating an automatic reconnect requires significant processor

resources. This problem can be significantly moderated by only connecting such resources as

needed, and by automatically releasing them at the end of the ruleset (see also the following

chapter section Lazy initialization). To do this, every module must implement a function with a

special name: <namespace>ExitRuleset (e.g. dexExitRuleset). After a ruleset has finished

processing, this special function is invoked for each module. The script calls for deactivating the

connection can be configured in this function.

Lazy initialization 

If all external resources must immediately be connected and then disconnected at the end every

time a ruleset is run, this can lead to significant unnecessary resource use. If a ruleset needs to

react quickly and thus run once a minute, in many cases not a single active data set will be

available for processing. Thus, unnecessary connections will frequently be created and then

disconnected. For this reason, external resources should always be connected via "Lazy

initialization". In this case, the connection will not be created at the same time as the search, but

only once it will actually be used.

This formula is relatively easy to implement in practice. Let's use "Reader" as an example, and we

want to use a resource that has the methods Open(), Read(), and Close(). The Open() should only

be run upon the first Read(), and the Close() only when an Open() has also been performed. The

ruleset reads a user name from this resource using readUser. The JavaScript code in Reader could

then look like this:

var readerInitialized = false;

var reader = new Object();

reader = {

function readUser() {

    If (!readerInitialized) {

        Open();

        readerInitialized = true;

    }

    return Read();

}

}

function readerExitRuleset() {

    if (readerInitialized) {

        Close();

32 Processes and automation



Using the readerInitialized global variable, the module will recognize whether a connection has

been opened using Open(). This is set to false when the program starts, and no contact exists yet.

If a rule from the ruleset then wants to identify the user name, the readUser() function is invoked.

There it will first check whether a connection already exists. If not, a connection is opened with 

Open() and readerInitialized set to true. Then, for subsequent calls, no additional Open() will be

executed. Only afterwards will Read() be used on the resource.

Once the ruleset is completed, the end function readerExitRuleset will be called for the Reader

module. This will check whether an open connection still exists, and then close it with Close() if

required.

    };

};

33 Processes and automation



ELOas JavaDoc 

ELOas 21 provides a number of utility classes/functions for completing frequent tasks. The JavaDoc

for the internal ELOas interface is available at http://www.forum.elo.com/javadoc/as/21/. In

addition, the current ELO master contains a collection of example rules for calling functions from

the ELOas interface.

Fig.: Overview

34 Processes and automation

http://www.forum.elo.com/javadoc/as/21/
http://www.forum.elo.com/javadoc/as/21/


Debugging 

Starting with version 7.00.024, a debugger is also available for ELOas. The debug engine built into

the Rhino Engine is used. It can be activated using a configuration parameter.

Fig.: ELO Automation Services Debugger

To operate the debugger, ELOas should be run locally from the developer's computer. In addition, it

should be started as a console process and not as a Windows service. Otherwise, the debugger will

not work on Windows Vista or Windows 7.

If you have multiple active rulesets in use, a separate debugger window opens for each. With the 

Window menu entry, you can switch between these individual windows.

In the debugger, you can set breakpoints for individual functions and inspect or change variable

contents. You can then resume execution in individual steps or run mode.

<entry key="debug">true</entry>

35 Processes and automation



Fig.: Apache Tomcat properties

Syntax errors in the script 

If the script contains a syntax error, JavaScript processing will not be able to start. The advantage

of this kind of error is that you will them right when you start the program, shown in the ELOas

status dialog box.

36 Processes and automation



Fig.: Syntax errors in the script

The complete generated JavaScript program with all embedded modules is logged in the ELOas

report on start-up to facilitate debugging. The error number listed refers to this section of the

report (starting with the section "//Import the IndexServer API classes").

14:28:07,681 DEBUG (WorkingSet.java:368) - load JavaScript Templates,

        Parent GUID=(23594D10-4704-4FF9-938B-136792051D67)

14:28:07,744 DEBUG (WorkingSet.java:385) - Script file found: Base Templates

14:28:07,744 DEBUG (WorkingSet.java:385) - Script file found: Imports

14:28:07,744 DEBUG (WorkingSet.java:385) - Script file found: ELO Utils

37 Processes and automation



Please note that this output will be repeated every restart and reload. Thus, a report file can

contain multiple lists. The last list in the report is always the most current.

Logical or runtime errors 

Runtime errors are somewhat more difficult to diagnose. The only option is to isolate the location

of the error using log outputs. Such a log output is unfortunately much less transparent than an

interactive debugger, but it also has significant advantages in batch processing. In ELOas, the Java

logger is available on the JavaScript page under the name log. For this reason, the JavaScript code

can also make entries there with log.debug().

14:28:07,759 DEBUG (WorkingSet.java:385) - Script file found: DB Access

14:28:07,759 DEBUG (WorkingSet.java:385) - Script file found: Document Export

14:28:07,759 DEBUG (WorkingSet.java:385) - Script file found: Dummy Modul mit

                                           Namenskonflikt

14:28:07,759 DEBUG (WorkingSet.java:276) - loadItems,

        Parent GUID=(9DAC7E8D-1467-4820-B53B-D27CCB5F06C0)

14:28:07,822 DEBUG (WorkingSet.java:286) - Number of Child entries: 1

14:28:07,822 DEBUG (WorkingSet.java:304) - Ruleset: MailRule1

14:28:08,025 DEBUG (WorkingSet.java:472) -

//Import the IndexServer API classes.

importPackage(Packages.de.elo.ix.client);

importPackage(Packages.java.lang);

importPackage(Packages.java.sql);

importPackage(Packages.sun.jdbc.odbc);

importPackage(Packages.java.io);

var NAME;

var ARCDATE;

var DOCDATE;

var OBJCOLOR;

var OBJDESC;

var OBJTYPE;

var ARCHIVINGMODE;

var ACL;

var EM_PARENT_ID;

var EM_PARENT_ACL;

var EM_NEW_DESTINATION = new Array();

var EM_FIND_RESULT = null;

…

var cmd = "SELECT * FROM objekte where objid = 22"

var res = getLine(1, cmd)

log.debug(res.objshort)

38 Processes and automation



The log outputs of the JavaScript code can be recognized by the lack of class name and missing

line number in the report (?:?).

log.debug(res.objidate)

log.debug(res.objguid)

15:38:57,643 DEBUG (?:?) - Now init JDBC driver

15:38:57,659 DEBUG (?:?) - Get Connection

15:38:57,659 DEBUG (?:?) - Init done.

15:38:57,659 DEBUG (?:?) - createStatement

15:38:57,659 DEBUG (?:?) - executeQuery

15:38:57,659 DEBUG (?:?) - read result

15:38:57,659 DEBUG (?:?) - getLine done.

15:38:57,659 DEBUG (?:?) - Suchen geändert.

15:38:57,659 DEBUG (?:?) - 56666880

39 Processes and automation



Standard modules 

This document provides a detailed description of the following standard modules:

cnt: ELO Counter Access

db: DB Access

dex: Document Export

ix: Indexserver functions

wf: Workflow Utils

mail: Mail Utils

fu: File Utils

run: Runtime Utilities.

The standard modules elo, tfer, addr, notify, exif, and www are described in the JavaDoc for the

internal ELOas interface available at http://www.forum.elo.com/javadoc/as/21/.

cnt: ELO Counter Access 

The standard module cnt enables access to ELOam counter variables.

cnt: Available functions 

Create counter: The createCounter() function creates a new counter with a start value that can be

preset. If the counter already exists, it is reset.

Get counter value: The getCounterValue() function gets the current value of the specified counter.

If the autoIncrement parameter is set to true, the counter value is automatically incremented as

well.

• 

• 

• 

• 

• 

• 

• 

• 

createCounter: function (counterName, initialValue) {

    var counterInfo = new CounterInfo();

    counterInfo.setName(counterName);

    counterInfo.setValue(initialValue);

    var info = new Array(1);

    info[0] = counterInfo;

    ixConnect.ix().checkinCounters(info, LockC.NO);

},

getCounterValue: function (counterName, autoIncrement) {

    var counterNames = new Array(1);

    counterNames[0] = counterName;

    var counterInfo = ixConnect.ix().checkoutCounters(counterNames,

                                                      autoIncrement,

40 Processes and automation

http://www.forum.elo.com/javadoc/as/21/
http://www.forum.elo.com/javadoc/as/21/


Create tracking number from counter: You can use the getTrackId() function when you need a

serial, automatically recognizable number. It reads the next counter value and codes a number

with a prefix and a check digit. The generated string looks like this: <prefix><sequential

number>C<check digit> ("ELO1234C0")

Create tracking number: You can use the calcTrackId() function when you need a serial,

automatically recognizable number. It codes a number with a prefix and a check digit. The

generated string looks like this: <prefix><sequential number>C<check digit> ("ELO1234C0")

Search for tracking number in text: The findTrackId() function searches a text for a tracking

number. The expected prefix and the length of the actual number can be controlled with a

parameter. If the number has a variable length, the length parameter can be set to 0. If no

appropriate result is found in the text, -1 is returned. Otherwise, the number value (and not the

complete track ID) is returned.

                                                      LockC.NO);

    return counterInfo[0].getValue();

},

getTrackId: function (counterName, prefix) {

    var tid = cnt.getCounterValue(counterName, true);

    return cnt.calcTrackId(tid, prefix)

},

calcTrackId: function (trackId, prefix) {

    var chk = 0;

    var tmp = trackId;

    while (tmp > 0) {

        chk = chk + (tmp % 10);

        tmp = Math.floor(tmp / 10);

    }

    return prefix + "" + trackId + "C" + (chk %10);

},

findTrackId: function (text, prefix, length) {

    text = " " + text + " ";

    var pattern = "\\s" + prefix + "\\d+C\\d\\s";

41 Processes and automation



db:DB Access 

The DB Access standard module provides simple access to external databases. ODBC databases,

as well as Microsoft SQL and Oracle SQL, are supported in the standard module. If other databases

need to be accessed with a native JDBC driver, the corresponding JAR files must be copied to the

LIB directory of the service, and the imports and access parameters saved to the Imports module.

The order of database definitions in the imports module will then determine the value of the 

Connection number parameter in the following calls.

db: Available functions 

This call must be provided as a parameter for an SQL query, which requests a column and returns

only one row as result.

For example:

    if (length > 0) {

        pattern = "\\s" + prefix + "\\d{" +

                  length + "}C\\d\\s";

    }

    var val = text.match(new RegExp(pattern, "g"));

    if (!val) {

        return -1;

    }

    for (var i = 0; i < val.length; i++) {

        var found = val[i];

        var number = found.substr(prefix.length + 1,

                                  found.length - prefix.length - 4);

        var checksum = found.substr(found.length - 2, 1);

        if (checkId(number, checksum)) {

            return number;

        }

    }

    return -1;

}

getColumn( connection number, SQL query );

"select USERNAME from CUSTOMERS where USERID = 12345"

42 Processes and automation



The connection number will determine which database connection is used. The list of available

connections is defined in the imports module.

Example with JavaScript code:

Example in the GUI Designer:

Fig.: GUI Designer

If the results list comprises multiple rows, only the first value is returned. All others are ignored

without returning an error message.

This request returns a JavaScript object as the result with the values of the first row of the SQL

query. The query can contain any number of columns, including an *. The column names, however,

must be unique and valid JavaScript identifiers. Please note that the JavaScript identifiers are case

sensitive.

var cmd = "select USERNAME from CUSTOMERS where USERID = 12345"

var res = getColumn(1, cmd)

log.debug(res)

getLine( connection number, SQL query );

43 Processes and automation



For example:

The connection number will determine which database connection is used. The list of available

connections is defined in the imports module.

Example with JavaScript code:

If the results list contains multiple rows, only the values of the first row are returned. All other rows

are ignored without returning an error message.

This command works in a similar way to the getLine request. However, it returns an array of

objects instead of a single object. Each row in the results list creates an entry in the array. To

prevent buffer overflows in case of large databases and poorly formed queries, you can limit the

maximum number of rows. Additional results are simply ignored.

Example:

The getLine or getColumn calls cannot be "abused" to make changes to the database. This

command uses the internal JDBC command executeQuery, which only permits SELECT queries.

In order to change an entry, the doUpdate call can be used. This transfers the entered SQL

command to the JDBC command executeUpdate, which can be used to change existing entries or

insert new entries.

Information

"select USERNAME, STREET, CITY from CUSTOMERS where USERID = 12345"

var cmd =

  "SELECT objshort, objidate, objguid FROM [elo20].[dbo].objekte where objid = 22"

var res = getLine(1, cmd)

log.debug(res.objshort)

log.debug(res.objidate)

log.debug(res.objguid)

getMultiLine(connection number, SQL command, maximum number of rows)

var obj = db.getMultiLine(1, "select objshort, objid from [elo80].[dbo].objekte where objid < 100 order by objsho

    for (var lg = 0; lg < obj.length; lg++) {

        log.debug(obj[lg].objid + " : " + obj[lg].objshort);

    }

doUpdate(connection number, SQL command)

44 Processes and automation



As all parameters have to be transferred in text format, be careful to correctly code any

quotation marks that may occur. Otherwise, error messages will occur, and in the worst

case scenario, this could even lead to an SQL injection attack on the SQL server.

Imports 

The type and scope of required imports depend on the database and can be found in the

manufacturer's documentation. The JAR files in use may need to be copied to the LIB directory of

the ELOas service.

The following shows an example of the necessary imports for the JDBC-ODBC bridge:

A standard system selector was introduced to the Imports module of the standard ELOas 12

libraries. For performance reasons, the standard system selector has the standard value 

SordC.mbLean and is used when processing available ELOas rules.

A system selector named EM_SYS_SELECTOR was also introduced to the Imports module. The system

selector is set to the value of the set standard system selector in the bt module. In the onStart

event of the ELOas rules, the system selector can use/process additional properties of an entry,

besides the ID and name.

At the same time, a workflow selector named EM_WF_SELECTOR was added to the workflow

constants:

Connection parameters 

The database connection parameters must be saved in the Imports module. There you can find a

list of connections that can be later addressed using their number (starting with 0) as connection

number.

importPackage(Packages.sun.jdbc.odbc);

const EM_SYS_STDSEL = SordC.mbLean;

EM_SYS_SELECTOR=SordC.mbAll;

var EM_WF_SELECTOR = SordC.mbLean;

var EM_connections = [

    {

        driver: 'sun.jdbc.odbc.JdbcOdbcDriver',

        url: 'jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=C:\\Temp\\EMDemo.mdb',

        user: '',

45 Processes and automation



The following information must be entered for each connection:

driver
JDBC class name for the database connection. You can get this information from the

JDBC driver provider or from the database provider.

url

Access URL to the database. Database-dependent connection parameters are

configured here, such as file paths for Access databases, or server names and ports

for SQL databases. These connection parameters are manufacturer-dependent and

can be found in the corresponding documentation.

user
Login name for database access. This parameter is not used by all databases (e.g. not

by unprotected Access databases). In such cases, the parameter can remain empty.

password Database password.

initdone Internal variable for "lazy initialization".

classloaded Internal variable to check whether the class file has already been loaded.

dbcn Internal variable to save the database connection object.

JavaScript code 

The dbInit routine is only called within the module. It is performed before each database access,

and checks whether a connection has been established, establishing one if necessary.

        password: '',

        initdone: false,

        classloaded: false,

        dbcn: null

    },

    {

        driver: 'com.microsoft.sqlserver.jdbc.SQLServerDriver',

        url: 'jdbc:sqlserver://srvt02:1433',

        user: 'elodb',

        password: 'elodb',

        initdone: false,

        classloaded: false,

        dbcn: null

    }

];

function dbInit(connectId) {

  if (EM_connections[connectId].initdone == true) {

    return

  }

  log.debug("Now init JDBC driver")

  var driverName = EM_connections[connectId].driver

  var dbUrl = EM_connections[connectId].url

46 Processes and automation



The exitRuleset_DB_Access() function is called automatically once the ruleset is finished

processing. It checks whether a connection exists, then closes it. This check must take place for all

configured databases.

  var dbUser = EM_connections[connectId].user

  var dbPassword = EM_connections[connectId].password

  try {

    if (!EM_connections[connectId].classloaded) {

      Class.forName(driverName).newInstance()

      log.debug("Register driver ODBC")

      DriverManager.registerDriver(new JdbcOdbcDriver())

      EM_connections[connectId].classloaded = true

    }

    log.debug("Get Connection")

    EM_connections[connectId].dbcn = DriverManager.getConnection(

      dbUrl,

      dbUser,

      dbPassword

    )

    log.debug("Init done.")

  } catch (e) {

    log.debug("ODBC Exception: " + e)

  }

  EM_connections[connectId].initdone = true

}

function exitRuleset_DB_Access() {

  log.debug("dbExit")

  for (i = 0; i < EM_connections.length; i++) {

    if (EM_connections[i].initdone) {

      if (EM_connections[i].dbcn) {

        try {

          EM_connections[i].dbcn.close()

          EM_connections[i].initdone = false

          log.debug("Connection closed: " + i)

        } catch (e) {

          log.info("Error closing database " + i + ": " + e)

        }

      }

    }

47 Processes and automation



The function getLine() reads a line from the database with any number of columns, then packs the

results into a JavaScript object. This object then receives a member variable with the column name

for each column.

  }

}

function getLine(connection, qry) {

  // Sub-function: creates a JavaScript object with

  // the imported database contents

  function dbResult(connection, qry) {

    // First establish the connection

    dbInit(connection)

    // Now create a SQL statement object

    var p = EM_connections[connection].dbcn.createStatement()

    // And execute the query

    var rss = p.executeQuery(qry)

    // rss contains the list of results. Now the first

    // row is read

    if (rss.next()) {

      // The number of columns is identified via the metadata

      var metaData = rss.getMetaData()

      var cnt = metaData.getColumnCount()

      // A member variable is created for each column

      // It has the SQL column name as the name and

      // imported database contents as the variable.

      // Additionally, the first column can always be addressed

      // under the name 'first'.

      for (i = 1; i <= cnt; i++) {

        var name = metaData.getColumnName(i)

        var value = rss.getString(i)

        this[name] = value

        if (i == 1) {

          this.first = value

        }

      }

    }

    // Finally, the list of results and the SQL

48 Processes and automation



dex: Document Export 

The Document Export module can automatically export documents from the repository to the file

system. This export is not a one-time process – if a new document version is created, the module

automatically writes an updated file. Further, published files can be deleted. For security reasons,

the files can only be placed in a preconfigured path.

To use this module, a metadata form must be defined that contains the document status and one

or more filing targets in the file system. In addition, the document number of the most recent

export will be saved in the form.

    // statement are closed.

    rss.close()

    p.close()

  }

  // the actual function's start is here. A

  // JavaScript object with the database contents

  // is requested.

  var res = new dbResult(connection, qry)

  return res

}

// The getColumn function is a special variant

// of the getLine call. The SQL query can only

// show one column as a result. If there are more

// columns, these will be ignored, along with

// additional rows.

function getColumn(connection, qry) {

  var res = getLine(connection, qry)

  return res.first

}

49 Processes and automation



Fig.: Status field in the metadata form

The status field determines the actions to be performed. Active: Released registers the file for

export. Active: Set for deletion deletes the file in the file system and sets the status to No longer

active/deleted. All other status settings do not trigger an ELOas action and are intended for

internal documents or documents that have not yet been released. As this status value is queried

for internal processing, it is a good idea to only enter values to this line from a preconfigured

keyword list.

The fields File path 1..5 contain the path and file name of the document in the file system. Note

that this is a relative path, where the starting path is preset as a fixed value called dexRoot in the

JavaScript module and can be changed there. This fixed value is designed for security purposes, as

otherwise user error could lead to files being overwritten.

The Last export field contains the document number of the most recently exported file version. If a

file is edited, creating a new version, the module recognizes this and writes a new copy to the file

system. This field is then refreshed.

If an error occurs during processing, the error rule enters the text "ERROR" to the Last export field.

This allows you to create a dynamic index in ELO, which then checks this field for the value ERROR

and thus always shows a current list of all documents that cannot be exported.

Example for a dynamic index when the form has an ID of 22:

!+ , objkeys where objmask = 22 and objid = parentid and okeyname ='PDEXPORT

        and okeydata ='ERROR'

50 Processes and automation



dex: Available functions 

This module only provides one function: processDoc. It is assigned the ELO Indexserver SORD

object as a parameter and, based on the status, checks whether the file should be exported or

deleted, then performs the corresponding action. The new document ID is then transferred as

return value. The current SORD object is available within a rule process in the JavaScript variable 

Sord.

Example in the XML ruleset code:

dex: JavaScript code 

First, the base path docRoot for the document repository is identified. The target path is always

ascertained from this setting and the user input in the metadata form. In principle, it would be

possible to leave the base path empty, allowing the user to enter any path they wish. However,

this approach would present a great security risk, as every user could overwrite any file from the

access area of ELOas.

The processDoc function is called from the rule definition. The status of the ELO Indexserver SORD

object is checked and the required function is called.

<rule>

    <name>Rule 1</name>

    <condition>(PDEXPORT != Sord.getDoc()) &amp;&amp; (PDEXPORT != "ERROR") || (PDSTATUS == "Active: Set for dele

    <index>

    <name>PDEXPORT</name>

    <value>dex.processDoc(Sord)</value>

    </index>

</rule>

var dexRoot = "c:\\temp\\"

51 Processes and automation



If the status was set to "Delete", the deleteDoc function initiates the deletion of the files and

changes the status to "Deleted".

The deleteFile function performs the actual deletion. It first checks whether a file name is

configured and whether the file exists, and then removes it from the file system.

The internal exportDoc function is called to write new file versions. The file is retrieved by the

document manager and copied to the target folder.

function processDoc(Sord) {

  log.debug("Status: " + PDSTATUS + ", Name: " + NAME)

  if (PDSTATUS == "Active: Set for deletion") {

    return dex.deleteDoc(Sord)

  } else if (PDSTATUS == "Active: Released") {

    return dex.exportDoc(Sord)

  }

  return ""

}

function deleteDoc(Sord) {

  dex.deleteFile(PDPATH1)

  dex.deleteFile(PDPATH2)

  dex.deleteFile(PDPATH3)

  dex.deleteFile(PDPATH4)

  dex.deleteFile(PDPATH5)

  PDSTATUS = "No longer active / deleted"

  return Sord.getDoc()

}

function deleteFile(destPath) {

  if (destPath == "") {

    return

  }

  var file = new File(docRoot + destPath)

  if (file.exists()) {

    log.debug("Delete expired version: " + docRoot + destPath)

    file["delete"]()

  }

}

52 Processes and automation



The copyFile function executes the copying process on the target folder. It first checks whether a

target file name already exists and if an older version exists that has to be deleted. The new

version is then retrieved by the document manager and saved in the target folder.

ix: IndexServer functions 

The ELOix module contains a collection of various ELO Indexserver functions that are required

frequently in scripting. However, most of these are simple wrappers to perform a similar ELO

Indexserver command, and not complex new functions in themselves.

ix: Available functions 

Delete a Sord entry : The object IDs of the SORD entry to be deleted and its parent entry must be

passed as parameters to the deleteSord() function.

function exportDoc(Sord) {

  var editInfo = ixConnect

    .ix()

    .checkoutDoc(Sord.getId(), null, EditInfoC.mbSordDoc, LockC.NO)

  var url = editInfo.document.docs[0].getUrl()

  dex.copyFile(url, PDPATH1)

  dex.copyFile(url, PDPATH2)

  dex.copyFile(url, PDPATH3)

  dex.copyFile(url, PDPATH4)

  dex.copyFile(url, PDPATH5)

  return Sord.getDoc()

}

function copyFile(url, destPath) {

    if (destPath == "") {

        return;

    }

    log.debug("Path: " + docRoot + destPath);

    var file = new File(docRoot + destPath);

    if (file.exists()) {

        log.debug("Delete old version.");

        file["delete"](#ELODOC-D50FBC7EA85D4A709D2C12762E1B9F300);

}

53 Processes and automation



Search for an entry : The lookupIndex() function identifies the object ID of an entry found via the

filing path. The archivePath parameter must start with a separator.

Search for an entry: The lookupIndexByLine() function identifies the object ID of an entry based on

a metadata field search. If the Mask ID parameter is transferred with an empty string, all metadata

forms are searched. The group name and the search term must be provided.

lookupIndex: function (archivePath) {

    log.info("Lookup Index: " + archivePath);

    var editInfo = ixConnect.ix().checkoutSord("ARCPATH:" + archivePath,

                                               EditInfoC.mbOnlyId, LockC.NO);

    if (editInfo) {

        return editInfo.getSord().getId();

    }   else {

        return 0;

    }

}

lookupIndex: function (archivePath) {

    log.info("Lookup Index: " + archivePath);

    var editInfo = ixConnect.ix().checkoutSord("ARCPATH:" + archivePath, EditInfoC.mbOnlyId, LockC

    if (editInfo) {

        return editInfo.getSord().getId();

    }   else {

        return 0;

    }

}

lookupIndexByLine : function(maskId, groupName, value) {

    var findInfo = new FindInfo();

    var findByIndex = new FindByIndex();

    if (maskId != "") {

        findByIndex.maskId = maskId;

    }

    var objKey = new ObjKey();

    var keyData = new Array(1);

    keyData[0] = value;

    objKey.setName(groupName);

    objKey.setData(keyData);

54 Processes and automation



Read the full text information: The getFulltext() function returns the current full text information

for a document. The full text data is returned as a string.

Please note

It is not possible to tell whether no full text exists, whether full text processing has been

completed, or if it was canceled with errors. The text that exists at the time the query is

performed is returned (which may be an empty string if no full text information exists).

js createSubPath: function (startId, destPath, folderMask) {

    var objKeys = new Array(1);

    objKeys[0] = objKey;

    findByIndex.setObjKeys(objKeys);

    findInfo.setFindByIndex(findByIndex);

    var findResult = ixConnect.ix().findFirstSords(findInfo, 1, SordC.mbMin);

    ixConnect.ix().findClose(findResult.getSearchId());

    if (findResult.sords.length == 0) {

        return 0;

    }

    return findResult.sords[0].id;

},

getFulltext: function(objId) {

    var editInfo = ixConnect.ix().checkoutDoc(objId, null, EditInfoC.mbSordDoc, LockC.NO);

    var url = editInfo.document.docs[0].fulltextContent.url

    var ext = "." + editInfo.document.docs[0].fulltextContent.ext

    var name = fu.clearSpecialChars(editInfo.sord.name);

    var temp = File.createTempFile(name, ext);

    log.debug("Temp file: " + temp.getAbsolutePath());

    ixConnect.download(url, temp);

    var text = FileUtils.readFileToString(temp, "UTF-8");

    temp["delete"](#ELODOC-D50FBC7EA85D4A709D2C12762E1B9F301)` checks whether the entered folder path exists 

log.debug("createPath: " + destPath);

55 Processes and automation



wf: Workflow Utils 

The wf module contains simplified access methods to workflow data. This is divided into two

groups of functions:

try {

    var editInfo = ixConnect.ix().checkoutSord("ARCPATH:" + destPath,

                                               EditInfoC.mbOnlyId, LockC.NO);

    log.debug("Path found, GUID: " + editInfo.getSord().getGuid() +

              " ID: " + editInfo.getSord().getId());

    return editInfo.getSord().getId();;

}   catch (e) {

    log.debug("Path not found, create new: " + destPath +

              ", use foldermask: " + folderMask);

}

items = destPath.split("¶");

var sordList = new Array(items.length - 1);

for (var i = 1; i < items.length; i++) {

log.debug("Split " + i + " : " + items[i]);

var sord = new Sord();

sord.setMask(folderMask);

sord.setName(items[i]);

sordList[i - 1] = sord;

}

log.debug("now checkinSordPath");

var ids = ixConnect.ix().checkinSordPath(startId, sordList,

        new SordZ(SordC.mbName | SordC.mbMask));

log.debug("checkin done: id: " + ids[ids.length - 1]);

return ids[ids.length - 1];

}

56 Processes and automation



The high level functions changeNodeUser and readActiveWorkflow are to be used for simple access

from a running WORKFLOW process, and work with the currently active workflow. They are easy to

use, but only perform a simple function.

The low level functions readWorkflow, writeWorkflow, unlockWorkflow, and getNodeByName can be

used from any location. If you want to make multiple changes to the same workflow, you can

ensure that the workflow will only be read and written once, and not multiple times for each

operation.

wf: Available functions 

Change user name of a person node: The changeNodeUser(): function replaces the user in the

current workflow node named nodeName with a new user - nodeUserName.

As this call reads, changes, and immediately rewrites the entire workflow, this simple call should

only be used when only one node needs to be edited. If multiple changes are necessary, use the

functions described later on to read, edit, and save a workflow.

As this function identifies the workflow ID from the currently active workflow, it can only be called

from the "WORKFLOW" search. When using it in a TREEWALK or a normal search, a random

workflow ID is used.

Copy user name at a node: The copyNodeUser() function works in a similar way to changeNodeUser;

however, it copies the user name from one node to another node.

changeNodeUser: function(nodeName, nodeUserName) {

    var diag = wf.readActiveWorkflow(true);

    var node = wf.getNodeByName(diag, nodeName);

    if (node) {

        node.setUserName(nodeUserName);

        wf.writeWorkflow(diag);

    }   else {

        wf.unlockWorkflow(diag);

    }

}

copyNodeUser: function(sourceNodeName, destinationNodeName) {

    var diag = wf.readActiveWorkflow(true);

    var sourceNode = wf.getNodeByName(diag, sourceNodeName);

var destNode = wf.getNodeByName(diag, destinationNodeName);

    if (sourceNode && destNode) {

        var user = sourceNode.getUserName();

        destNode.setUserName(user);

        wf.writeWorkflow(diag);

57 Processes and automation



Read current workflow: The readActiveWorkflow() function reads the currently active workflow into

a local variable for editing. At the end, it can be rewritten with writeWorkflow, or the lock can be

removed with unlockWorkflow.

Read workflow: The readWorkflow() function reads a workflow into a local variable. It can then be

evaluated and changed. If you want to save the changes, it can be rewritten using writeWorkflow.

If the workflow is locked and can be read but you do not want to save any changes, the lock can be

removed with unlockWorkflow.

Rewrite workflow: The writeWorkflow() function writes the workflow from a local variable to the

database. Any write lock set on it is reset automatically.

Reset read lock: unlockWorkflow() function. If a workflow with a write lock has been read but

cannot be changed, the lock can be reset with unlockWorkflow.

        return user;

    }   else {

        wf.unlockWorkflow(diag);

        return null;

    }

}

readActiveWorkflow: function(withLock) {

    var flowId = EM_WF_NODE.getFlowId();

    return wf.readWorkflow(flowId, withLock);

    },

readWorkflow: function(workflowId, withLock) {

    log.debug("Read Workflow Diagram, WorkflowId = " + workflowId);

    return ixConnect.ix().checkoutWorkFlow(String(workflowId),

                                           WFTypeC.ACTIVE,

                                           WFDiagramC.mbAll,

                                           (withLock) ? LockC.YES : LockC.NO);

},

writeWorkflow: function(wfDiagram) {

    ixConnect.ix().checkinWorkFlow(wfDiagram, WFDiagramC.mbAll, LockC.YES);

},

unlockWorkflow: function(wfDiagram) {

    ixConnect.ix().checkinWorkflow(wfDiagram, WFDiagramC.mbOnlyLock, LockC.YES);

},

58 Processes and automation



Search workflow nodes: The getNodeByName() function searches the workflow node for a node

name. The name must be unique, as otherwise the first node found will be returned.

Start workflow from template: The startWorkflow() function starts a new workflow for an ELO object

ID from a workflow template.

mail: Mail Utils

This module is intended for sending e-mails. It requires an SMTP host, through which the e-mails

can be sent. This host has to be made known before sending the first e-mail by using the 

setSmtpHost function. Messages can then be sent with SendMail or SendMailWithAttachment. The

module consists of two parts: one for sending e-mails and one for reading e-mail mailboxes.

mail: Available functions for reading a mailbox

You can define a ruleset so that a search is performed on a mailbox and not the ELO repository or

ELO task list. A logon routine has to be configured in the module for each type of mailbox. In this

function, the mail server must be contacted, the desired e-mail folder searched through, and the

list of messages read. Afterwards, ELOas continues to process the command normally. A document

is prepared for each e-mail in the folder designated in SEARCHVALUE. Next, the ruleset is executed

(the subject of the e-mail is automatically applied to the short name field). If the entry is not saved

at the end, there will be nothing to find in the repository either. Only saved e-mails are transferred

to the repository.

getNodeByName: function(wfDiagram, nodeName) {

    var nodes = wfDiagram.getNodes();

    for (var i = 0; i < nodes.length; i++) {

        var node = nodes[i];

        if (node.getName() == nodeName) {

            return node;

        }

    }

    return null;

},

startWorkflow: function(templateName, flowName, objectId) {

    return ixConnect.ix().startWorkFlow(templateName, flowName, objectId);

}

<search>

<name>"MAILBOX_GMAIL"</name>

<value>"ARCPATH:¶ELOas¶IMAP"</value>

<mask>2</mask>

59 Processes and automation



In the ruleset, MAILBOX_<connection name> must be defined as the name, and the repository path

or the number of the target folder as the value. A metadata form to be used for new documents

also has to be defined.

The e-mail is then processed in the ruleset script. The mail module offers a few help routines to

simplify this. In the following example, the body of the e-mail message will be copied to the Extra

text tab in the metadata. Sender, recipient, and MailID will be applied to the corresponding fields of

the e-mail form:

If additional values or information are required, a complete Java e-mail (Mime) message object is

available in the MAIL_MESSAGE variable.

To ensure that processed e-mail messages are not transferred to the repository multiple times, you

should perform a search for the MailID before you start processing. If the e-mail message is already

in the repository, the variable MAIL_ALLOW_DELETE is set to true. Otherwise, the e-mail message is

processed. By setting the deletion flag, the e-mail is either removed from the mailbox or marked as

processed during transfer.

This approach only reads an e-mail twice (once for normal processing, and once in the next pass

for deletion), but it has the great advantage of ensuring the e-mail is only deleted from the mailbox

if it definitely exists in the repository.

If you want to use a mailbox for monitoring, the following four functions are required in the

JavaScript library 'mail':

Establish connection, open mailbox folder: nextImap_<connection name>

Next message in the list for processing: finalizeImap_<connection name>

OBJDESC = mail.getBodyText(MAIL_MESSAGE);

ELOOUTL1 = mail.getSender(MAIL_MESSAGE);

ELOOUTL2 = mail.getRecipients(MAIL_MESSAGE, "¶");

ELOOUTL3 = msgId;

EM_WRITE_CHANGED = true;

var msgId = MAIL_MESSAGE.messageID;

if (ix.lookupIndexByLine(EM_SEARCHMASK, "ELOOUTL3", msgId) != 0) {

    log.debug("Mail bereits im Repository vorhanden, Ignorieren oder Löschen");

    MAIL_ALLOW_DELETE = true;

}   else {

    OBJDESC = mail.getBodyText(MAIL_MESSAGE);

    ELOOUTL1 = mail.getSender(MAIL_MESSAGE);

    ELOOUTL2 = mail.getRecipients(MAIL_MESSAGE, "¶");

    ELOOUTL3 = msgId;

    EM_WRITE_CHANGED = true;

}

60 Processes and automation



Mark message as processed or delete: finalizeImap_<connection name>

Close connection: closeImap_<connection name>

In simple cases, only one of these four functions needs to be implemented: establish connection – 

connectImap_<Verbindungsname>. As a complete range of project-specific actions takes place here

(login parameters, searching for target folder), there is no standard implementation. The three

other functions already exist with a standard function in the system. You simply need to implement

them to perform these additional functions.

Connect to IMAP server: connectImap_<connection name>(): This function must establish a

connection with the e-mail server, search for the desired mailbox, and read it. Existing messages

are saved to the variable MAIL_MESSAGES. The e-mail store must be saved to the variable 

MAIL_STORE and the folders that are read out to the variable MAIL_INBOX. Both of these values are

required at the end of processing to close the connection. The variable MAIL_DELETE_ARCHIVED

determines whether messages can be deleted from the mailbox. If set to false, deletion requests

from the ruleset are ignored. This function will not be directly called up via a script, but rather

activated internally in ELOas (in the MAILBOX search, in the example MAILBOX_GMAIL).

Close connection: The closeImap_<Verbindungsname> function is optional and closes the current

connection to the IMAP server. If no special tasks need to be performed on closing, you do not

need to implement this function. Instead, the standard implementation closeImap() from the

library is used. This closes the folder and the store.

connectImap_GMAIL: function() {

    var props = new Properties();

    props.setProperty("mail.imap.host", "imap.gmail.com");

    props.setProperty("mail.imap.port", "993");

    props.setProperty("mail.imap.connectiontimeout", "5000");

    props.setProperty("mail.imap.timeout", "5000");

    props.setProperty("mail.imap.socketFactory.class",

                      "javax.net.ssl.SSLSocketFactory");

    props.setProperty("mail.imap.socketFactory.fallback", "false");

    props.setProperty("mail.store.protocol", "imaps");

    var session = Session.getDefaultInstance(props);

    MAIL_STORE = session.getStore("imaps");

    MAIL_STORE.connect("imap.gmail.com", "<<<USERNAME>>>@gmail.com",

                       "<<<PASSWORT>>>");

    var folder = MAIL_STORE.getDefaultFolder();

    MAIL_INBOX = folder.getFolder("INBOX");

    MAIL_INBOX.open(Folder.READ_WRITE);

    MAIL_MESSAGES = MAIL_INBOX.getMessages();

    MAIL_POINTER = 0;

    MAIL_DELETE_ARCHIVED = false;

},

61 Processes and automation



Mark message as processed or delete: The finalizeImap_<connection name>() function is optional

and deletes the current message, or otherwise marks it as processed. If it is not implemented,

ELOam uses the standard implementation, which deletes a processed e-mail from the folder.

The following example does not delete the e-mail, but rather sets it to "read".

Process next message in the list: The nextImap_<connection name> function is optional and returns

the next message in the selected mailbox to the ruleset for processing. If the function is not

implemented, ELOas will use the standard implementation, which sends every document for

processing.

The example shows an implementation that only processes unread e-mails. They can be used in

pairs with the finalizeImap implementation above, which sets e-mails as read rather than deleting

them.

Please note

If you work with this method, you must use another way to ensure that the mailbox does

not grow too large (such as by deleting automatically after a certain date).

closeImap_GMAIL: function() {

    // hier können eigene Aktionen vor dem Schließen ausgeführt werden

    // Standardaktion, Folder und Store schließen.

    MAIL_INBOX.close(true);

    MAIL_STORE.close();

},

finalizeImap_GMAIL: function() {

    if (MAIL_DELETE_ARCHIVED && MAIL_ALLOW_DELETE) {

        message.setFlag(Flags.Flag.SEEN, true);

    }

},

nextImap_GMAIL: function() {

    if (MAIL_POINTER > 0) {

        mail.finalizePreviousMessage(MAIL_MESSAGE);

    }

    for (;;) {

        if (MAIL_POINTER >= MAIL_MESSAGES.length) {

            return false;

        }

62 Processes and automation



Read e-mail body text: The getBodyText() function transfers the message as a parameter (available

in the script via the variable MAIL_MESSAGE) and returns the mail body as return parameter. It also

searches for the first MIME part of type TEXT/PLAIN. If no corresponding part exists, an empty

string is returned.

Identify sender: The getSender() function returns the e-mail address of the sender.

        MAIL_MESSAGE = MAIL_MESSAGES[MAIL_POINTER];

        var flags = MAIL_MESSAGE.getFlags();

        if (flags.contains(Flags.Flag.SEEN)) {

            MAIL_POINTER++;

            continue;

        }

        MAIL_ALLOW_DELETE = false;

        MAIL_POINTER++;

        return true;

    }

    return false;

},

getBodyText: function(message) {

    var content = message.content;

    if (content instanceof String) {

        return content;

    }   else if (content instanceof Multipart) {

        var cnt = content.getCount();

        for (var i = 0; i < cnt; i++) {

            var part = content.getBodyPart(i);

            var ct = part.contentType;

            if (ct.match("^TEXT/PLAIN") == "TEXT/PLAIN") {

                return part.content;

            }

        }

    }

    return "";

},

63 Processes and automation



Identify recipient: The getRecipients() function returns a list of all recipients (TO and CC). If there is

more than one recipient, the list is provided in column index format, assuming that the ELO

separator symbol ¶ is transferred in the 'delimiter' parameter.

Available functions for sending e-mails

The send functions are not used directly by ELOas. They are utility functions for custom script

programming to conceal the complexity of the Java mail API from the script developer.

Register SMTP server: The setSmtpHost() function registers the library of the SMTP host to be used.

This library is used to send e-mails. This function must be activated before the first sendMail call.

Send e-mail: The sendMail() function sends an e-mail. The sender and recipient addresses are

transferred as parameters, in addition to the subject and e-mail text.

getSender: function(message) {

    var adress = message.sender;

    return adress.toString();

},

getRecipients: function(message, delimiter) {

    var adresses = message.allRecipients;

    var cnt = 0;

    if (adresses) { cnt = adresses.length; }

    var hasMany = cnt > 1;

    var result = "";

    for (var i = 0; i < cnt; i++) {

        if (hasMany) { result = result + delimiter; }

        result = result + adresses[i].toString();

    }

    return result;

}

setSmtpHost: function(smtpHost) {

    if (MAIL_SMTP_HOST != smtpHost) {

        MAIL_SMTP_HOST = smtpHost;

        MAIL_SESSION = undefined;

}

},

64 Processes and automation



Send e-mail with attachment: The sendMailWithAttachment() function sends an e-mail. The sender

and recipient addresses are transferred as parameters, in addition to the subject, e-mail text, and

the object ID of the attachment from ELO. The attachment is stored as a temporary file in a

temporary path; sufficient space must be available at this location.

sendMail: function(addrFrom, addrTo, subject, body) {

    mail.startSession();

    var msg = new MimeMessage(MAIL_SESSION);

    var inetFrom = new InternetAddress(addrFrom);

    var inetTo = new InternetAddress(addrTo);

    msg.setFrom(inetFrom);

    msg.addRecipient(Message.RecipientType.TO, inetTo);

    msg.setSubject(subject);

    msg.setText(body);

    Transport.send(msg);

},

sendMailWithAttachment: function(addrFrom, addrTo, subject, body, attachId) {

    mail.startSession();

    var temp = fu.getTempFile(attachId);

    var msg = new MimeMessage(MAIL_SESSION);

    var inetFrom = new InternetAddress(addrFrom);

    var inetTo = new InternetAddress(addrTo);

    msg.setFrom(inetFrom);

    msg.addRecipient(Message.RecipientType.TO, inetTo);

    msg.setSubject(subject);

    var textPart = new MimeBodyPart();

    textPart.setContent(body, "text/plain");

    var attachFilePart = new MimeBodyPart();

    attachFilePart.attachFile(temp);

    var mp = new MimeMultipart();

    mp.addBodyPart(textPart);

    mp.addBodyPart(attachFilePart);

    msg.setContent(mp);

    Transport.send(msg);

    temp["delete"]();

}

65 Processes and automation



fu: File Utils 

The File Utils functions help ELOas users with file operations.

fu: Available functions 

Clean up file name: If you want to create a file name from the short name, it may contain critical

characters that can lead to problems in the file system (e.g. colon, backslash, and ampersand).

The clearSpecialChars() function replaces all characters other than numbers and letters with an

underscore (including umlauts and ß).

Load document file: The getTempFile() function downloads the document file for the specified ELO

object to the local file system (in the ELOas temp folder). If the file is no longer required, it must be

removed again by the script developer using the function deleteFile. Otherwise, it will remain on

the hard drive.

Please note

This returns a Java file object, not a file name.

Delete file: The deleteFile() function expects a Java file object as a parameter (not a string) and

deletes this file.

clearSpecialChars: function(fileName) {

    var newFileName = fileName.replaceAll("\\W", "_");

    return newFileName;

},

getTempFile: function(sordId) {

    var editInfo = ixConnect.ix().checkoutDoc(sordId, null,

                                              EditInfoC.mbSordDoc, LockC.NO);

    var url = editInfo.document.docs[0].url;

    var ext = "." + editInfo.document.docs[0].ext;

    var name = fu.clearSpecialChars(editInfo.sord.name);

    var temp = File.createTempFile(name, ext);

    log.debug("Temp file: " + temp.getAbsolutePath());

    ixConnect.download(url, temp);

    return temp;

},

66 Processes and automation



run: Runtime Utilities 

This module contains routines for access to the Java runtime. This allows external processes to be

started or the current memory status to be queried.

Start process: The execute(command) command starts an external process. ELOas waits for the

this call to finish and only then does it continue processing. This allows actions in this process to be

evaluated as well.

Query free and available memory: The freeMemory() and maxMemory() commands display the

currently available free memory and the maximum available memory.

deleteFile: function(delFile) {

    delFile["delete"]();

}

log.debug("Process: " + NAME );

run.execute("C:\\ Tools\\BAT\\dirlist.bat");

log.debug("Read Result");

var txt = dex.asString("dirlist.txt");

log.debug "freeMemory: " + run.freeMemory() +

        ", maxMemory: " + run.maxMemory());

67 Processes and automation



Examples

Example – Moving a document 

A document needs to be moved in ELO.

Open the ELO Automation Services in the ELO Administration Console.

Click Add.

Enter a new name for the rule, such as Move newsletter.

The new rule is created but not yet saved.

Select a search metadata form.

In this example, the Marketing metadata form is used.

In the Index search field, select the metadata form field that you want to use to select

documents.

In this example, the Status field is used. If the Status field contains the value sent, the

document will be moved. Documents with other values will not be moved.

Enter "sent" as the search term.

Please note

If quotation marks are used in the example, they are necessary. If one or both quotation

marks are missing, this leads to an error.

1. 

2. 

3. 

4. 

5. 

6. 

68 Processes and automation



Fig.: Interval controls for rules

Define the interval that will pass before the rule is executed again.

Optional: In the Start and End fields, you can enter script commands that are executed at

the beginning or after the rule has been executed.

This example uses the log.info("<Any text>") command to mark the beginning and end of

the rule execution in the ELO Automation Services log file. This can be useful for

troubleshooting.

The path for the log file is as follows:

<installation path>\logs\<name of server instance>\as-<repository name>.log

Fig.: Selection of the available target forms

Under Target forms for rules selection, enter the metadata form that is used.

1. 

2. 

69 Processes and automation



Fig.: Rule settings

Under Rules, enter a name for the first rule on the Wizard tab.

In this example, the rule is named Filing.

Enter the target path to the Filing path field.

This example uses the following path:

"¶Marketing¶Newsletter¶Sent"

Under Target form, select the metadata form used above.

Click Add field (green plus icon) and select the field used above.

In the input field, enter the value that you want to apply to the field on the metadata form.

This prevents the rule from entering into an infinite loop.

This example uses the value: "sent and moved".

Fig.: Rules for errors

Optional: Under Global Error Rule, you can specify a rule that is triggered on errors.

This example uses the following path:

3. 

4. 

5. 

6. 

7. 

70 Processes and automation



"¶Marketing¶Newsletter¶Error"

In this example, the value "Move error" is entered in the status field to prevent an infinite

loop here as well.

Save the ruleset.

Fig.: ELO Automation Services status page, Reload

Go to the ELO Automation Services status page of and click Reload for the respective rule.

You can access the ELO Automation Services status page via the respective ELO Application

Server manager or via the URL with the following structure:

http(s)://<server name>:<port>/as-<repository name>/?cmd=status

The rule moves documents containing the character string "sent" to the Sent folder.

8. 

9. 

71 Processes and automation



Example: e-mail folder monitoring 

The ELO Automation Services JavaScript library contains a module for sending and receiving e-

mails. This guide will explain how to use ELOas to monitor a mailbox.

Information

This example is not intended to simulate e-mail archiving. There are other modules in our

product range that better accomplish this task. Instead, it is intended to serve as a basis for

"autoresponders", i.e. programs that automatically trigger an action in response to an e-

mail message (for example, a user sends a registration e-mail, after which their account is

activated).

General approach 

Before a ruleset can be created to process mailboxes, a mailbox connection must be created in the

mail module. As there are many differences and options here, it is not possible to work from a

simple configuration list. Instead, you have to create a connect method for each mailbox

connection. This must establish a connection with the e-mail server, select the correct mailbox,

and read the list of messages.

Every mailbox connection is given a simple, short name - e.g. GMAIL. This name is required at

various locations and must be "identifier-compatible", i.e. it must start with a letter and can then

contain additional letters or numbers (but no special characters, including letters with accent

marks). This name is required at various places in the ruleset and the JavaScript implementation.

Establishing the connection 

The JavaScript library already has a definition in the standard installation for a connection with the

name GMAIL. We will use it for the example. As the connection name is used in special functions,

you can also define multiple connections in parallel and use them in various rulesets.

The standard function for establishing the GMAIL connection looks like the following:

connectImap_GMAIL: function() {

    var props = new Properties();

    props.setProperty("mail.imap.host", "imap.gmail.com");

    props.setProperty("mail.imap.port", "993");

    props.setProperty("mail.imap.connectiontimeout", "5000");

    props.setProperty("mail.imap.timeout", "5000");

    props.setProperty("mail.imap.socketFactory.class",

                      "javax.net.ssl.SSLSocketFactory");

    props.setProperty("mail.imap.socketFactory.fallback", "false");

72 Processes and automation



The example connects to the Googlemail server "imap.gmail.com" at port "993" via an encrypted

connection (mail.store.protocol - imaps). This information is entered to a property object. Your

own e-mail server may require other values - refer to the e-mail server's documentation for details.

Information

If you set up a Google e-mail account, you must first enable IMAP access to use this

method. This is possible under Settings > Forwarding and POP/IMAP > Activate IMAP.

Logon is then performed using the command MAIL_STORE.connect. Enter the server name again, as

well as the mailbox user with password.

After logon, the Inbox folder is searched for first. However, any other folders can be monitored,

such as Sent:

Using the command MAIL_INBOX.getMessages(), all e-mails in the folder are read and added to the

internal message list. This list will be processed later by calling the ruleset once for each entry in

this list.

The variable MAIL_DELETE_ARCHIVED determines whether the ruleset is allowed to delete messages

or mark them as processed after successful processing. If it is set to "false", as is preconfigured,

the message status is not changed. This is especially practical in the testing phase, as it is not

necessary to constantly create new e-mails. In production, this entry is normally set to "true".

Create ruleset 

A simple ruleset to process the mailbox content consists of two main parts: the definition of the

search and the script to process the e-mails.

The search is defined as follows:

    props.setProperty("mail.store.protocol", "imaps");

    var session = Session.getDefaultInstance(props);

    MAIL_STORE = session.getStore("imaps");

    MAIL_STORE.connect("imap.gmail.com",

                       "<USER>@gmail.com",

                       "<PASSWORD>");

    var folder = MAIL_STORE.getDefaultFolder();

    MAIL_INBOX = folder.getFolder("INBOX");

    MAIL_INBOX.open(Folder.READ_WRITE);

    MAIL_MESSAGES = MAIL_INBOX.getMessages();

    MAIL_DELETE_ARCHIVED = false;

},

MAIL_INBOX = folder.getFolder("[Google Mail]/Sent")

73 Processes and automation



The search name "MAILBOX_GMAIL" signalizes that this is not a normal repository search, but

rather a search of a mailbox with the connection name GMAIL. The created ELO documents are

filed to the "IMAP" folder (via ARCPATH:¶IMAP) and created with form 2 (e-mail in a standard ELO

repository). Normally, the number of results is no longer relevant, but it should still be entered to

prevent an error message in the designer.

The script to run is essentially determined by the required function. A simple script could look like

the following:

When the script is run, the message is available in the MAIL_MESSAGE variable. Standard values like

e-mail text, sender, and recipient can be read from here. To simplify the process, the mail module

provides the help routines getBodyText, getSender, and getRecipients.

The subject is automatically used as the short name (NAME). The body of the e-mail is entered to

the extra text, and the sender and recipient are transferred to their corresponding metadata fields.

Last, the message is marked as processed as deleted via MAIL_ALLOW_DELETE.

The complete example will then look like the following:

<search>

<name>"MAILBOX_GMAIL"</name>

<value>"ARCPATH:¶IMAP"</value>

<mask>2</mask>

<max>200</max>

</search>

<script>

    log.debug("Process Mailbox: " + NAME);

    OBJDESC = mail.getBodyText(MAIL_MESSAGE);

    ELOOUTL1 = mail.getSender(MAIL_MESSAGE);

    ELOOUTL2 = mail.getRecipients(MAIL_MESSAGE, "¶");

    EM_WRITE_CHANGED = true;

    MAIL_ALLOW_DELETE = true;

</script>

<ruleset>

<base>

<name>Mailbox</name>

<search>

<name>"MAILBOX_GMAIL"</name>

<value>"ARCPATH:¶IMAP"</value>

<mask>2</mask>

<max>200</max>

74 Processes and automation



Monitored processing 

This simple example has a significant disadvantage: when an e-mail has already been marked as

"processed" or deleted, and the process is canceled before the data could be saved in the

repository, a data set will remain unprocessed. This problem can be completely avoided by working

with a two-level approach: a new e-mail is initially only saved in ELO, but not deleted. The e-mail is

only deleted if a later run finds that it already exists in ELO.

This approach has two requirements: the e-mail must be uniquely identifiable, and the method

must check during processing whether the e-mail already exists in the repository. The first

condition is easy to meet: every e-mail has an internal mail ID. This can be saved to a metadata

field in ELO (such as in the default e-mail form in the field ELOOUTL3, which is intended for the

mail ID). The second condition can easily be met with a help routine from the ELOix module: 

ix.lookupIndexByLine.

The changed script will then look like the following:

</search>

<interval>10M</interval>

</base>

<rule>

<name>List</name>

<condition></condition>

<script>

    log.debug("Process Mailbox: " + NAME);

    OBJDESC = mail.getBodyText(MAIL_MESSAGE);

    ELOOUTL1 = mail.getSender(MAIL_MESSAGE);

    ELOOUTL2 = mail.getRecipients(MAIL_MESSAGE, "¶");

    EM_WRITE_CHANGED = true;

    MAIL_ALLOW_DELETE = true;

</script>

</rule>

<rule>

<name>Global Error Rule</name>

<condition>OnError</condition>

<script></script>

</rule>

</ruleset>

<script>

    log.debug("Process Mailbox: " + NAME);

    // if the message is already in the repository: then delete..

75 Processes and automation



Marking instead of deleting 

In the standard implementation, a processed e-mail is deleted from the mailbox. This is

undesirable in some cases. However, a marker can be set for the messages instead. A possible

candidate is the "read" flag. A processed e-mail message is set as "read" by ELOas and thus differs

from a new e-mail. In this special case, additional methods have to be defined in the mail

JavaScript library in addition to the connectImap method:

nextImap_GMAIL(): This function switches to the next message. In this example, you have to check

whether an e-mail has already been marked as read, and can skip over it if needed.

finalizeImap_GMAIL(): This function marks the processed message. In the standard

implementation, the message is deleted. In our example, however, it should only be marked as 

read.

nextImap_GMAIL 

This function switches to the next message. It goes through the list of messages in sequence. The

current position is saved in the MAIL_POINTER variable. If a message has already been marked as

read, it is skipped. At the first unread message, it is activated (meaning, copied into the 

MAIL_MESSAGE variable) and the value "true" is returned. If there are no further messages, a "false"

value is returned. ELOas finishes processing this ruleset and then switches to the next.

    var msgId = MAIL_MESSAGE.messageID;

    if (ix.lookupIndexByLine(EM_SEARCHMASK, "ELOOUTL3", msgId) != 0) {

        log.debug("E-mail already exists in repository,

                  ignore or delete");

        MAIL_ALLOW_DELETE = true;

    }   else {

        OBJDESC = mail.getBodyText(MAIL_MESSAGE);

        ELOOUTL1 = mail.getSender(MAIL_MESSAGE);

        ELOOUTL2 = mail.getRecipients(MAIL_MESSAGE, "¶");

        ELOOUTL3 = msgId;

        EM_WRITE_CHANGED = true;

    }

</script>

nextImap_GMAIL: function() {

    for (;;) {

        if (MAIL_POINTER >= MAIL_MESSAGES.length) {

            return false;

76 Processes and automation



In addition to switching to the next message, initialization takes place: the variable 

MAIL_ALLOW_DELETE is set to false. This value should only be set to true when an object has been

processed within the ruleset. In this case, the e-mail is marked as processed in the finalizeImap

method.

finalizeImap_GMAIL 

The finalizeImap_GMAIL function must mark an e-mail as processed. This is done by setting the 

SEEN flag. However, it may only be set if the connect method allows it at all

(MAIL_DELETE_ARCHIVED), and the ruleset has marked the current e-mail message as archived

(MAIL_ALLOW_DELETE).

        }

        MAIL_MESSAGE = MAIL_MESSAGES[MAIL_POINTER];

        var flags = MAIL_MESSAGE.getFlags();

        if (flags.contains(Flags.Flag.SEEN)) {

            MAIL_POINTER++;

            continue;

        }

        MAIL_ALLOW_DELETE = false;

        MAIL_POINTER++;

        return true;

    }

    return false;

},

finalizeImap_GMAIL: function() {

if (MAIL_DELETE_ARCHIVED &amp;&amp; MAIL_ALLOW_DELETE) {

        message.setFlag(Flags.Flag.SEEN, true);

    }

},

77 Processes and automation



Example – migrating a document database 

For our internal "Improvement suggestion scheme", we have to migrate a database with about

1400 entries to ELO. The metadata and the documents are located in this database. In ELO, we

want to create a folder every time metadata is entered, which then contains the actual document

as a child entry. ELOas has been selected as primary tool for the migration.

Since ELOas currently cannot create documents, a dummy entry had to be initially created for each

folder. Fortunately, the entries in the database have been numbered consecutively from 1 to 1440.

For this reason, the dummy folders were relatively simple to create using a VBS script. All folders

were created within another folder with the object ID of 274312.

After this, ELOas is called. The data is collected from an SQL database:

Set ELO = CreateObject("ELO.professional")

Elo.CheckUpdate 0

for i=1 to 1440

    call Elo.PrepareObjectEx( 0, 4, 337 )

    Elo.ObjShort="TrackId " & i

    Elo.ObjIndex="#274312"

    call Elo.SetObjAttrib(2, i)

    call Elo.SetObjAttrib(0, "GilleM")

    call Elo.SetObjAttrib(3, "Produktverbesserung")

    Elo.UpdateObject

next

Elo.CheckUpdate 1

"select Editor, Email, TheSubject, LTrim(BunField1) BunField1,

        ClassName, Task

                from [InetHelpDesk].[dbo].tblTasks a,

                     [InetHelpDesk].[dbo].tblBatch b,

                     [InetHelpDesk].[dbo].tblClass c,

                     [InetHelpDesk].[dbo].tblUser d

                        where a.BunID = b.BunId

                                and a.KlaID = c.KlaID

                                and a.UsrID = d.UsrID

                                and AufID = " + ETS_COUNT

78 Processes and automation



Fig.: SQL database

This is a somewhat extensive SELECT statement, which otherwise offers no special features. There

is only one point worth mentioning: in the Select list, there is a column titled LTrim(BunField1)

BunField1. In the database field BunField1, the data is partially saved with leading spaces, which

we don't want. These are removed with LTrim. However, this means that the column would no

longer have a name, which is why the column name is subsequently specified as BunField1. This

technique should always be used when calculated values are to be used in the Select list.

The complete ruleset will look like this:

<ruleset>

    <base>

        <name>ImportTracker</name>

        <search>

            <name>"ETS_COUNT"</name>

            <value>"*"</value>

            <mask>337</mask>

            <max>200</max>

        </search>

        <interval>1H</interval>

    </base>

<rule>

    <name>Rule1</name>

    <condition></condition>

79 Processes and automation



    <script>

        /* The data for the current folder is

        */ loaded from the database here

        var item = db.getLine(1, "select Editor, Email, TheSubject,

LTrim(BunField1) BunField1, ClassName, Task

from [InetHelpDesk][dbo].tblTasks a,

[InetHelpDesk].[dbo].tblBatch b,

[InetHelpDesk].[dbo].tblClass c,

[InetHelpDesk].[dbo].tblUser d

 where a.BunID = b.BunId                                                        and a.KlaID = c.KlaID            

        /* ETS_COUNT contains the record number, which is cleared after successful processing. */

        ETS_COUNT = "";

        /* The short name field is completed from the database, please note maximum field length! */

        NAME = item.DerBetreff;

        if (NAME == "") { NAME = "unknown"; }

        if (NAME.length() > 127) { NAME = NAME.substring(0, 126); }

        // The initiator is populated from the database.

        ETS_MAIL = item.Email;

        /* The subject field was assigned different keywords in the database than in the repository

        /*  translation table is used here for this reason.

           A column index is used in ELO. */

        var thema = item.BunFeld1;

        if (thema == "Administration, Installation, Reporting") { thema = "Administration¶Installation¶Reporting"

        if (thema == "Display, Sort, Edit, Send, Manage, Search") { thema = "Document Editing¶Viewer¶Structure Ed

        if (thema == "Display, Edit, Sort, Send, Manage, Search") { thema = "Document Editing¶Viewer¶Structure Ed

        if (thema == "User Interface, Design, Menus, Navigation") { thema = "Usability¶Interface"

        if (thema == "Sticky notes, Stamps") { thema = "Annotations"; }

        if (thema == "Office / Explorer Integration") { thema = "Office Integration¶OS Integration"

        if (thema == "Offline availability") { thema = "Offline"; }

        if (thema == "Links, References, Attachments") { thema = "Links¶References"; }

        if (thema == "Scanning, Intray, Conversion, Printing") { thema = "Scanning¶Intray¶Conversion¶Printing"

        if (thema == "Security, Login, Encryption, User rights") { thema = "User rights"; }

        if (thema == "Keyword lists, Metadata, Metadata forms, Versioning") { thema = "Metadata¶Document filing"

        if (thema == "Workflow, Tasks") { thema = "Workflow¶Tasks"; }

        if (thema == "Interfaces, Scripts") { thema = "Scripting¶Interfaces"; }

        ETS_THEMA = thema;

        ETS_USER = "Product management";

        ETS_STATUS_INT = item.ClassName;

80 Processes and automation



After ELOas has entered the metadata the database and created the HTML and XML document

files, the ELO XML Importer imports the HTML files into the corresponding folders. This concludes

the migration process. Time required for the complete project: about 4 hours.

        EM_WRITE_CHANGED = true;

        //* The database information has now been entered. Only the document still remains unprocessed.

           This will be created as an HTML file with an XML control file

        for the ELO XML Importer.. First, the HTML file is written:*/

        var id = Sord.getId();

        var dataFile = new File("d:\\temp\\trk\\" + id + ".htm");

        Utils.stringToFile(item.Order, dataFile, "ISO-8859-15");

        /* Next, the XML data stream is created.

           As the metadata is entered in the folder, only rudimentary metadata can be found here. */

        var xmlDesc = NAME.replace("\"", "'").

                           replace("&amp;", "&amp;amp;").

                           replace("<", "&amp;lt;").

                           replace(">", "&amp;gt;");

        var xmlFile = new File("d:\\temp\\trk\\" + id + ".xml");

        var xmlText = "<?xml version=\"1.0\" ?><eloobjlist

                       ver=\"1.0\"><obj><desc value=\"";

        xmlText = xmlText + xmlDesc;

        xmlText = xmlText +

                  "\"/><type value=\"0\"/><destlist><destination

                          type=\"1\" value=\"#";

        xmlText = xmlText + id;

        xmlText = xmlText + "\"/></destlist><docfile name=\"";

        xmlText = xmlText + id;

        xmlText = xmlText + ".htm\"/></obj></eloobjlist>";

        // The XML file is written last.

        Utils.stringToFile(xmlText, xmlFile, "UTF-8");

    </script>

</rule>

<rule>

    <name>Global Error Rule</name>

    <condition>OnError</condition>

    <script></script>

</rule>

</ruleset>

81 Processes and automation



Example - Treewalk for ELOas 

There is a tree walk function available in ELO Automation Services to help process documents. This

makes it possible to not only process search areas, but also to run through entire tree structures.

Introduction 

Normally, ELOas performs a search for an index field to determine the list of documents to be

processed. Alternatively, however, a "tree walk" can also be performed. With this tree walk,

individual branches, or even the complete repository can be run through. Each entry is read twice:

once a folder is entered, after which all child entries are run through, and then again when the

folder is exited.

Example: We will use a filing cabinet metaphor, with the highest level folder titled "cabinet", then

"folder", then "folder tab". The cabinet contains folders 1 and 2. Folder 1 contains folder tab 1.1.

The following process then results:

A script can check whether the ruleset is called in the ascending branch (entering) or in the

descending branch (exiting) using the EM_TREE_STATE variable. This contains 0 when entering and 1

when exit. Saving is only performed on exit. Changes that are performed upon entering the

branch, however, will be retained until it is exited, even if a number of other objects were edited in

the meantime.

A treewalk is initiated when the group name of the search index is entered as "TREEWALK", and as

a search term the number of the starting node. No rules can be called on the start node. They are

only performed on child entries.

Usage example 

The following example runs through a branch and sets an internal ID (TrackId) for all objects of

form type 6 (Track Item). The starting folder has the ID 3352.

In this simple example, no error handling has been provided, and for this reason the error rule is

empty.

Cabinet (enter)

Folder 1 (enter)

Folder tab 1.1 (enter)

Folder tab 1.1 (exit)

Folder 1 (exit)

Folder 2 (enter)

Folder 2 (exit)

Cabinet (exit)

82 Processes and automation



The interesting part of the ruleset lies in the script area, which for this reason will be discussed for

each line individually in the following:

<ruleset>

    <base>

        <name>Create TrackId</name>

        <search>

            <name>"TREEWALK"</name>

            <value>3352</value>

            <mask>6</mask>

            <max>200</max>

        </search>

        <interval>10M</interval>

    </base>

<rule>

    <name>CreateId</name>

    <script>

        if ((EM_TREE_STATE == 1) &amp;&amp; (EM_ACT_SORD.getMask() == 6)) {

            // Only process TrackItems

            //cnt.createCounter("ETSTrackId", 10000);

            if (ETS_TICK == "") {

                log.debug("Create new TrackId: " + NAME);

                ETS_TICK = cnt.getTrackId("ETSTrackId", "V");

                EM_WRITE_CHANGED = true;

            }

        }

    </script>

</rule>

<rule>

    <name>Global Error Rule</name>

    <condition>OnError</condition>

    <script>

    </script>

</rule>

</ruleset>

if ((EM_TREE_STATE == 1) &amp;&amp; (EM_ACT_SORD.getMask() == 6)) {

83 Processes and automation



The script should only be run when exiting the branch (EM_TREE_STATE == 1), and only on objects of

type TrackItem (EM_ACT_SORD.getMask() == 6).

The example uses a counter, which must be created in advance, for example through the

command entered above. However, it can only be created once, as otherwise the TrackId will be

continually reset.

A TrackId is only created if one does not exist yet (metadata field ETS_TICK is empty).

To create track IDs, there is a practical method in the counter module cnt: getTrackId(

<CounterName>, <prefix> ). This method takes a new counter value and supplements it with the

prefix and a checksum. In the example, track ID V10001C2 is created from the counter value

10001.

The object is only saved if a new track ID has been created.

The ruleset is executed every 10 minutes and passes through the complete track item folder. All

entries without a track ID are automatically supplemented, regardless the client they were created

with.

Runtime environment variables 

When the ruleset is executed, there are a large number of other variables that can be used for

processing in addition to the EM_TREE_STATUS value.

Name Content

EM_TREE_STATUS
Specifies whether the ruleset is executed in the ascending branch (0) or

descending branch (1).

EM_ACT_SORD Contains the SORD object with the current object data.

// Only process TrackItems

//cnt.createCounter("ETSTrackId", 10000);

if (ETS_TICK == "") {

log.debug("Create new TrackId: " + NAME)

ETS_TICK = cnt.getTrackId("ETSTrackId", "V")

EM_WRITE_CHANGED = true

}

}

84 Processes and automation



Name Content

EM_PARENT_SORD

Contains the SORD object with the data of the parent node. This data can

in principle also be changed. However, you have to make sure these

changes are saved. In addition, the change must be recognized in the

descending branch and the EM\_WRITE\_CHANGED flag set to true.

EM_ROOT_SORD

Contains the SORD object with the start node. As the ruleset is not applied

to this entry, you will have to save your changes manually. This can take

place by setting the variable EM_SAVE_TREE_ROOT.

EM_INDEX_LOADED

In contrast to processing after a search, it cannot be assumed with a

treewalk that a loaded SORD object has a specific form type. In principle,

any form can come up. The preset index variables from the metadata

fields can, however, only be generated and filled that have been

registered in the definition under <mask\ and under <masks>. In this

case, the variable EM_INDEX_LOADED is set to true. If the form is unknown,

the metadata fields can only be accessed via the EM_ACT_SORD object; 

EM_INDEX_LOADED is set to false.

Information: when the index variables are filled, the metadata fields in 

EM_ACT_SORD should not be directly edited. These changes will then be lost

before saving if the index variables are rewritten.

EM_TREE_LEVEL

With this variable, you can determine where you are within the treewalk

(what level). The child entries in the start node are located at level 0 (for

the start node, no rules are called).

EM_TREE_MAX_LEVEL

You can set a maximum depth with this rule. Child entries nested deeper

than this will be ignored. Normally, this value is set to 32. If it must be

changed, it can be set to the desired value before processing in the 

onstart routine.

EM_SAVE_TREE_ROOT

No rules can be called for the treewalk start node. If this has been

changed through access via EM_TREE_ROOT or EM_PARENT_SORD, the variable 

EM_SAVE_TREE_ROOT must be set to register these changes.

<onend>var result = …var oldstate = …EM_SAVE_TREE_ROOT = result !=

oldstate;log.debug("now save root: " + EM_SAVE_TREE_ROOT);</onend>

EM_TREE_EVAL_CHILDREN

If a run determines that a subarea should be excluded from processing,

the variable EM_TREE_CHILDREN can be set to false. This value will only be

evaluated for an ascending branch (with a descending branch, it would

have been too late anyway, as the subarea would already have been

processed) and it will be initiated for every object set to true (standard

behavior: run through the entire subarea).

EM_TREE_ABORT_WALK

If you want to abort a run completely, you can set the flag 

EM_TREE_ABORT_WALK at any time. In this case, no more child entries are

passed through. Additional entries at the same level that have not been

processed will also remain unprocessed. This flag can be set to cancel

processing after a fatal error.

85 Processes and automation



Name Content

Information: In the onstart routine, necessary runtime controls can be

performed to check whether the treewalk may be performed at all. If not,

this flag can be used to cancel the run.

86 Processes and automation



Example - Workflow processing 

An extension exists to process workflow tasks. In a workflow, individual person nodes can be

created for the ELOas account. If a workflow activates this node, an ELOas "WORKFLOW" search

can be used to find and process a list of the active workflow tasks. This can be used to add the

metadata and forward the workflow.

The necessary rulesets must be created at the XML level.

Collecting the workflow task list is essentially the same as a normal search. Enter "WORKFLOW" as

the metadata field name. The search term itself will be ignored and should remain empty.

Even if a search form is not required to collect the list, a search form must still be specified. From

the list of tasks, only those workflows will be processed that have this form. This is necessary in

order for the index data to be able to be loaded in the local JavaScript variables. If a workflow

should be able to use more than one form type, the ruleset must be entered multiple times.

Information

In the list of deadlines, no "FindFirst – FindNext" action will be performed. If there are a

number of tasks that will not be processed, this can lead to no new tasks being found for

actual processing.

When processing workflows, there are two activities in addition to changing the metadata:

forwarding and changing the workflow. The following example shows how the workflow can be

influenced depending on the current metadata. In addition, a simple approval workflow will be

examined, for which the person processing it is not clear at the start. This person will be entered in

the course of the workflow to the PROCESSOR index field by the mailroom department. In the

template, the processor node is first initialized with Owner. The correct value is read from the 

PROCESSOR index field at runtime, then entered to the node. ELOas then runs under the ELO name

elowf with a person node between the mailroom and the claims processor.

<base>

    <name>Workflow2</name>

    <search>

        <name>"WORKFLOW"</name>

        <value></value>

        <mask>13</mask>

        <max>1000</max>

    </search>

    <interval>1M</interval>

</base>

87 Processes and automation



Fig.: Workflow designer, workflow template with ELOas

When the workflow arrives at ELOas, the mailroom will have defined the claims processor. ELOas

reads the PROCESSOR metadata field and enters the value to the Processor successor node. This

takes place through the following simple rule:

Changing the ELO user name is performed by the wf.changeNodeUser command. Enter the workflow

name as the first parameter and the ELO user name as the second. The library wf takes care of the

rest (locking the workflow, searching for the node, refreshing users, saving the workflow, releasing

the lock).

<rule>

    <name>Expand Name</name>

    <condition></condition>

    <script>

        log.debug("Process WF: " + NAME);

        wf.changeNodeUser("Employee", EMPLOYEE);

        EM_WF_NEXT = "0";

    </script>

</rule>

88 Processes and automation



After the user name has been set, the workflow has to be forwarded. This takes place by setting

the variable EM_WF_NEXT. If left empty, nothing will be forwarded. The task remains the same (which

should not remain as is forever, as at some point the list of deadlines will overflow). Once all

conditions for forwarding have been met, then either the connection number or the name of the

successor node can be specified. If there is only one successor, then the connection number can

be entered: EM_WF_NEXT = "0";.

If there are multiple successors, the name of the successor node should be entered instead. It will

also be assumed that the process will automatically be booked after the person processing it has

forwarded it, meaning the accounting node will also be transferred to ELOas. This runs a script that

audits the accounting data. If the script runs successfully, the function ERPverify() will return true

and the workflow is forwarded to the Charge account node. If an error occurs, the workflow is

returned to the claims processor. The script could then look like the following:

If (ERPverify()) {

    EM_WF_NEXT = "Book";

}   else {

    EM_WF_NEXT = "Employee";

}

89 Processes and automation



Filing via ELO Dropzone

ELOas filing via ELO Dropzone tiles 

ELOas 20.0 enables automatic filing via ELO Dropzone tiles. In an ELO Dropzone tile, you can define

metadata for new documents. The following step-by-step guide will explain how to configure

automatic filing.

Please note

Automatic filing via ELO Dropzone requires the latest ELOas standard libraries. You will find

them on the official download page http://www.forum.elo.com/script/20/eloinst.html. You

also need an ELO XML Importer license to automatically file documents using a Dropzone

tile.

Step by step 

Create the individual ELO Dropzone tiles using the ELO Dropzone module. The tiles are

stored in // Administration // Dropzone. The tile definition is saved in the entry's extra text.

The "ELOas Base" folder contains a "Tiles" child folder. The required ELO Dropzone tiles are

referenced to this folder. ELOas does not differentiate between personal and global tiles.

Fig.: Folder with referenced ELO Dropzone tiles

1. 

2. 

1. 

90 Processes and automation

http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html


A monitored directory is defined in the ELOas configuration file "config.xml".

One child folder is expected for each tile. Existing tiles must have a unique name for automatic

filing to work.

Fig.: Monitored directory

The files that are later automatically transferred to the repository by ELOas based on the tile

definition land in these individual child folders.

<entry key="monitordir">C:\temp\ELOAsMonitor</entry>

91 Processes and automation



Fig.: Individual documents in the child folder before automatic filing

Regular expressions are configured in the metadata for the "Tiles" folder. These are then

available for all tiles.

1. 

92 Processes and automation



Fig.: Regular expression in the metadata for the 'Tiles' folder

With ELOas 11.0, a new rule type has been introduced for filing via an ELO Dropzone tile. The

"<name>" section contains the "TILE" value and the "<value>" section contains the name of

the referenced ELO Dropzone tile.

Fig.: ELOas rule for filing via ELO Dropzone

At defined intervals, ELOas checks the monitored tile directory to see whether it contains new

documents to be filed. If this is the case, it files them. Existing folders are skipped. In a tile, you

can define that local documents should be deleted after they are filed to the repository. If errors

occur during filing, the problematic files are moved to a child folder named "Errors" so that ELOas

does not repeatedly process them.

1. 

93 Processes and automation



Barcode

Introduction 

ELO Automation Services offer a utility class ELOasUtils with functions for reading and writing

barcodes. The Softek library and ZXing library can be used for barcode functionality.

Information

For more information on the Softek library, go to: http://www.bardecode.com/en1/app/

barcode-reader-toolkit-for-windows/.

Further information on the ZXing library can be found at: http://zxing.github.io/zxing/

apidocs.

94 Processes and automation

http://www.bardecode.com/en1/app/barcode-reader-toolkit-for-windows/
http://www.bardecode.com/en1/app/barcode-reader-toolkit-for-windows/
http://www.bardecode.com/en1/app/barcode-reader-toolkit-for-windows/
http://zxing.github.io/zxing/apidocs
http://zxing.github.io/zxing/apidocs
http://zxing.github.io/zxing/apidocs


Reading barcodes with the Softek library 

From ELOas version 10 onward, you can read barcodes using the Softek library. Barcodes are

recognized via the Softek barcode DLLs "SoftekBarcodeDLL.dll" or "SoftekBarcode64DLL.dll",

depending on the operating system (32/64-bit). Barcode recognition is used in an ELOas script as

follows:

Barcodes formats in the Softek library 

Refer to the official Softek library documentation for supported barcode formats. The following

formats are supported:

Codabar 1D

Code 128 1D

Code 2 of 5 Datalogic 1D

Code 2 of 5 Iata1 1D

Code 2 of 5 Iata2 1D

Code 2 of 5 Industrial 1D

Code 2 of 5 Interleaved 1D

Code 2 of 5 Matrix 1D

Code 3 of 9 1 D

Code 3 of 9 Extended 1D

Code 93 1D

EAN-8 1D

EAN-13 1D

GS1-128, UCC-128, EAN-128 1D

GS1-Databar 2D

Patch Code Symbols 1D

UPC-A 1D

UPC-E 1D

QR-Code 2D

Data Matrix ECC200 2D

Micro-PDF-417 2D

PDF417

var barcodeReader = Packages.de.elo.mover.utils.ELOAsUtils.

                    createBarcodeReader2(emConnect);

var barcodeFile = new File("C://temp//BarcodeFile.tif");

var barcodeCount = ScanBarCode(barcodeFile.getPath());

log.info("barcodeCount=" + barcodeCount);

var barcodeDescr = GetBarString(barcodeCount);

log.info("barcodeDescr=" + barcodeDescr);

barcodeReader.

barcodeReader.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

95 Processes and automation



Example for reading a QR code 

You can enable the function to read QR codes with the ELOas instruction:

Information

The methods of the BarcodeReader class are described in the official ELOas JavaDoc.

"barcodeReader.setReadQrCode(1);"

96 Processes and automation

http://www.forum.elo.com/javadoc/as/21/de/elo/mover/main/barcode/BarcodeReader.html
http://www.forum.elo.com/javadoc/as/21/de/elo/mover/main/barcode/BarcodeReader.html


Reading barcodes with the ZXing library 

Barcodes are read via the static getBarcode method of the ELOas class ELOAsUtils. In this method,

the file, the file page with the barcode, and the barcode configuration are transferred as

parameters.

The individual settings in the barcode configuration are separated by a pipe symbol. An example

configuration could look like this.

Example

In addition, the method getBarcodeResult is available in the class ELOAsUtils. This method returns

the entire barcode result.

Example

Barcodes formats in the ZXing library 

Refer to the official ZXing library documentation for supported barcode formats. The individual

formats are listed in the ZXing class BarcodeFormat. Further information can be found at: http://

zxing.github.io/zxing/apidocs/.

The following formats are supported:

Aztec 2D

CODABAR 1D

Code 128 1D

Code 39 1D

Code 93 1D

Data Matrix 2D

EAN-13 1D

String barcode = ELOAsUtils.getBarcode(IXconnect ixConnect, File file,

                                       int page, String barcodeConfig);

String barcodeConfig = "POSSIBLE_FORMATS:CODE_128,QR_CODE|

                       CHARACTER_SET:UTF8|ALLOWED_EAN_EXTENSIONS:2,5|

                       PURE_BARCODE:TRUE|RETURN_CODABAR_START_END:TRUE|

                       ASSUME_CODE_39_CHECK_DIGIT:TRUE|TRY_HARDER:TRUE";

Result barcodeResult = ELOAsUtils.getBarcodeResult(IXconnect ixConnect,

                                                   File file,

                                                   int page,

                                                   String barcodeConfig);

• 

• 

• 

• 

• 

• 

• 

• 

97 Processes and automation

http://zxing.github.io/zxing/apidocs/
http://zxing.github.io/zxing/apidocs/
http://zxing.github.io/zxing/apidocs/


EAN-8 1D

ITF (Interleaved Two of Five) 1D

MaxiCode 2D

PDF417

QR Code 2D

RSS 14

RSS EXPANDED

UPC-A 1D

UPC-E 1D

UPC/EAN extension

• 

• 

• 

• 

• 

• 

• 

• 

• 

98 Processes and automation



Creating barcodes with the ZXing library 

Creating barcodes on a document page takes place via the writeBarcode method. In this method,

the target file, the barcode text, the size of the barcode, and the barcode configuration are

transferred as parameters.

Sample configuration

A call to a static ELOas method in an ELOas rule looks like this:

This enables you to use barcode information in ELO Automation Services.

ELOasUtils.writeBarcode(IXconnect ixConnect, File targetFile,

                        String barcodeText, int width, int height,

                        String barcodeConfig)

String barcodeConfig = "AZTEC_LAYERS:13|CHARACTER_SET:UTF8|

                       DATA_MATRIX_SHAPE:FORCE_RECTANGLE|

                       ERROR_CORRECTION:M|MARGIN:20|PDF417_COMPACT:TRUE|

                       PDF417_COMPACTION:NUMERIC|PDF417_DIMENSIONS:5,10,5,10";

var result = Packages.de.elo.mover.utils.ELOAsUtils.

                getBarcode(emConnect,barcodeFile, 1, barcodeConfig);

99 Processes and automation



Debugger

ELOas debugger 

Searching for errors in an extensive ruleset can require a great deal of time and effort. The

JavaScript must be adjusted for each pass. To do so, you must check out the document, edit it,

check it back in, and then click Reload. Further, the use of the Rhino debugger under Apache

Tomcat is problematic in a Windows 7 environment. You can save yourself at least this and the

checkout/check-in process by using the ELOas debugger.

Information

For more information on the ELOas debugger, refer to the "ELO Automation Services

Debugger (Java FX)" documentation.

Opening the program 

The ELOas debugger 20 comes with OpenJDK 13. The debugger uses the supplied Java Runtime

Environment and is started via the file "ELOAsDebug.bat" with the following content:

.\jdk-13.0.2\bin\java.exe -Xmx1000m --module-path=.\lib\modules

        --add-modules javafx.controls,javafx.base,javafx.graphics,

                javafx.web,javafx.swing

                        -classpath ".\*;.\lib\*"

                                de.elo.mover.eloasdbg.javafx.StartEloAs

100 Processes and automation



Fig.: 'ELOAsDebug.bat' file in the Windows file system

Configuration 

Click the Config button. This will take you to the configuration dialog box.

101 Processes and automation



Fig.: Debugger configuration

The title of the dialog box displays the ID of the ELOas debugger profile being edited. The user

password is hidden in the user password text field.

Name: The profile name may contain a maximum of 15 characters.

ELO user: The name of the ELO user.

Password: The password for the ELO Indexserver connection.

IX-URL: The URL of the ELO Indexserver. The text field contains a green background when the ELO

Indexserver is available at the specified URL.

Root folder: The path where the ELOas configuration is saved.

Checkout dir: Clicking the button next to the Checkout dir field allows you to select the ELO Java

Client checkout directory.

102 Processes and automation



Tiles dir: Clicking the button next to Tiles dir allows you to select the monitored directory for the

referenced ELO Dropzone tiles.

Report file: Clicking the button next to the Report file field allows you to select an ELOas debugger

report file.

Log file: Clicking the button next to the Log file field allows you to select the log file.

Global direct rule parameters: Here, you can configure the global parameters for direct ELOas

rules. You can edit the user ID and ten parameters.

The profile configuration dialog box has a scroll bar that is shown when the dialog box is reduced

beyond a certain size.

Click the OK button to save your changes in the system registry. The settings for the current ELOas

debugger profile (ID: 1) are saved to the following location in the system registry:

"HKEY_CURRENT_USER\Software\JavaSoft\Prefs\elo digital office\eloas.1".

Click Cancel to discard your changes and close the dialog box. You can also press the ESC key to

close the ELOas debugger profile configuration dialog box. The dialog box has a minimum size

setting. When you enlarge the dialog box, the individual components of the dialog box are

enlarged proportionally. This allows you to display long profile inputs.

Editing a ruleset 

After starting, all rulesets for the current configuration are loaded automatically. However, they are

not run right away, allowing you to enter breakpoints to the JavaScript code.

103 Processes and automation



Fig.: ELOas Automation Services, edit ruleset

If you have multiple rulesets, please ensure that you have selected the correct one in the Rhino

debugger window under Window. Now you can set breakpoints wherever you wish and start the

ruleset.

Start a ruleset by clicking the corresponding ruleset entry in the list and then clicking Run. Please

note that the ruleset is now activated, but will naturally still be subject to the interval control. If

you have set the ruleset start for midnight, it will also only become active in the debugger at this

point in time. For debugging purposes, the setting "1M" - i.e. once a minute - is a good setting for

recurring rulesets, and "10H" - i.e. every 10 hours - good for rulesets that should be run once.

If you want to edit a ruleset or a JavaScript file, then you can check them out or call the already

checked out file directly in a text editor of your choice. Perform your desired changes and then

save the data. As long as the editor does not open the file exclusively (which is somewhat

uncommon for text editors), you will not need to close the editor as well. Simply click Run in the

debugger again. The ruleset will now be automatically reloaded and restarted from the repository

and the checkout directory. A new log file is created so you do not have to deal with old logs.

104 Processes and automation



Debugger (Java FX)

Opening the program 

The ELOas debugger starts via the file EloAsDebug.exe and requires a computer with JRE 1.7 or

higher installed.

You can also run the ELOas debugger via the command line using the following command:

Use with OpenJDK 

The ELOas debugger can also be used with OpenJDK. The ELOas debugger 20 comes as a complete

package with OpenJDK 13. Java no longer has to be installed separately.

In the program directory of the ELOas debugger, click the file "ELOasDebug.bat".

Displaying the debugger on high-resolution screens 

For the Rhino debugger embedded in the ELOas debugger to be displayed properly with a

horizontal resolution of 4000 pixels (4K) on Windows 10 (from version 1703), you have to configure

the option for scaling the application. Follow the steps below to configure this option:

On the file system, right-click the file "EloAsDebug.exe" and select the "Properties" menu

item.

Open the tab "Compatibility".

Click the "Change high DPI settings" button.

Check the box next to "Overwrite behavior for high DPI scaling".

Select "System" from the drop-down menu.

Click OK to save your changes.

ELOas debugger 20 includes the Rhino scripting engine "rhino-1.7.12.jar".

"C:\Program Files\Java\jre1.8.0_152\bin\javaw.exe"

        -classpath ".\*;lib\*" de.elo.mover.eloasdbg.javafx.StartEloAs

1. 

2. 

3. 

4. 

5. 

6. 

105 Processes and automation



User interface 

The ELOas debugger user interface looks like this:

Fig.: ELOas debugger user interface

When you start the ELOas debugger, the first rule is selected by default. The rule contents are

shown on the right-hand side.

Information

The ELOas debugger is only available in English.

The size and position of the individual program dialog boxes are saved in the registry and then

restored the next time the program starts. The dimensions are saved for the main ELOas debugger

window, the LogFactor5 window, the profiles overview dialog box, the profile and parameter

configuration windows, and the About this program dialog box.

The column arrangement in the LogFactor5 dialog box is also saved to the registry and restored

the next time the program starts.

The ELOas debugger contains a split bar between the list of existing rulesets and the status area.

The split bar position is saved to the registry and restored the next time the program starts.

106 Processes and automation



Searching rule contents 

The rule contents are shown on the right-hand side of the ELOas debugger interface. You can

search the contents using the search field located above this space.

Fig.: Searching the rule contents

After entering your search term to the search field, it will be highlighted in the rule contents if

found.

Additional options are available in the search field context menu.

Fig.: Search field context menu

Copy copies the text to the clipboard and Paste inserts your text from the clipboard. Clicking Use

last entry enters the last search term to the search field. Clicking Delete removes the search term.

107 Processes and automation



Status reports 

The main window of the ELOas debugger features a multi-line text field for background process

status reports. This field cannot be edited, but its contents can be copied to the clipboard.

Program information 

Fig.: 'About this program' dialog box

The lower left of the dialog box contains a button for program information. Clicking the button

opens the 'About this program' dialog box, where you will find the program version and Java

version. You will also find links to the keyboard shortcuts for the ELOas debugger and ELOas

documentation. Click Close to exit this dialog box.

108 Processes and automation



Starting an ELOas rule 

Click Run to begin debugging an ELOas rule. The debug process is run in the embedded Rhino

debugger. If the option for LF5 output is enabled in the current ELOas debugger profile, this

program also starts in a separate window. This window displays the ELOas debugger outputs. The

different log levels can be marked in a suitable color, as needed. Click Stop to stop debugging an

ELOas rule. The buttons for starting and stopping a rule are always active in the current version of

the ELOas debugger.

If you click Run without selecting an ELOas rule first, the following warning appears:

Fig.: Error message when starting debugging without selecting an ELOas rule

109 Processes and automation



Profiles 

Using ELOas debugger profiles 

The upper right area of the main ELOas debugger window contains a drop-down menu with the

ELOas debugger profiles. This drop-down menu contains 10 profiles. Each profile can be uniquely

identified based on the profile name.

When you select a profile, the relevant graphic dialog components are refreshed. The list of

existing ELOas rules is also refreshed when you change profiles. This list displays the rules from

the ELOas debugger profile currently in use. Double-click an ELOas rule to start the debug process

for that rule.

Fig.: Context menu in the ELOas debugger

Right-click a rule to open the list context menu. The following actions are available in the context

menu:

Run: Start the debug process for the selected ELOas rule.

110 Processes and automation



Stop: Stop the debug process.

Edit param: Modify the rule parameters. The specific parameters for the direct rule are applied

instead of the global rule.

Open rule: Open the rule as a text file.

Goto rule: Open the filing location of the rule in ELO.

Open log file: Open the configured ELOas debugger log file.

Open report file: Open the configured ELOas debugger report file.

Reload rules: Reload the existing ELOas rules.

Show shortcuts: Shows the keyboard shortcuts in the ELOas debugger.

The list of available rulesets also shows the direct rulesets. The individual rulesets are

distinguished from one another based on their icon. The type icon of a ruleset contains a

corresponding description text.

Profile overview 

111 Processes and automation



Fig.: ELOas debugger profile overview

Click Overview to open the overview of existing ELOas debugger profiles. The existing profiles are

shown on an HTML page. The overview shows the most important properties of a profile. Save the

profile overview to the local file system as an HTML file by clicking Save as HTML.

Information on the selected profile 

Fig.: Information on the selected profile

The main dialog box of the ELOas debugger contains an info icon that you can click to see the most

important data on the currently selected ELOas debugger profile.

Editing profiles 

Edit the active ELOas debugger profile by clicking Config.

112 Processes and automation



Fig.: Profile configuration dialog box

The title of the dialog box displays the ID of the ELOas debugger profile being edited. The user

password is hidden in the user password text field.

Name: The profile name may contain a maximum of 15 characters.

ELO user: The name of the ELO user.

Password: The password for the ELO Indexserver connection.

IX-URL: The URL of the ELO Indexserver. The text field contains a green background when the ELO

Indexserver is available at the specified URL.

Root folder: The path where the ELOas configuration is saved.

Checkout dir: Clicking the button next to the Checkout dir field allows you to select the ELO Java

Client checkout directory.

113 Processes and automation



Tiles dir: Clicking the button next to Tiles dir allows you to select the monitored directory for the

referenced ELO Dropzone tiles.

Report file: Clicking the button next to the Report file field allows you to select an ELOas debugger

report file.

Log file: Clicking the button next to the Log file field allows you to select the log file.

Global direct rule parameters: Here, you can configure the global parameters for direct ELOas

rules. You can edit the user ID and ten parameters.

The profile configuration dialog box has a scroll bar that is shown when the dialog box is reduced

beyond a certain size.

Click the OK button to save your changes in the system registry. The settings for the current ELOas

debugger profile (ID: 1) are saved to the following location in the system registry:

"HKEYCURRENTUSER\Software\JavaSoft\Prefs\elo digital office\eloas.1".

Click Cancel to discard your changes and close the dialog box. You can also press the ESC key to

close the ELOas debugger profile configuration dialog box. The dialog box has a minimum size

setting. When you enlarge the dialog box, the individual components of the dialog box are

enlarged proportionally. This allows you to display long profile inputs.

Editing direct rules 

Fig.: Dialog box for editing direct rules

114 Processes and automation



In this dialog box, you can edit the specific parameters of a direct rule. You can reach this dialog

box via the context menu by selecting a rule in the list of available rules. In this dialog box, you

can edit the user ID and the ten available parameters.

Changing profiles 

If you have edited the profile and want to switch to another profile, you will have to restart the

ELOas debugger.

Fig.: Message dialog box indicating automatic restart after changing profiles

115 Processes and automation



Keyboard shortcuts 

Individual ELOas debugger functions are also assigned keyboard shortcuts.

F1 shows the About this program dialog box.

F2 opens the profile overview.

F3 jumps to the next search result.

SHIFT + F3 jumps to the previous search result.

F9 uses the last entry.

F12 opens the overview of keyboard shortcuts.

CTRL+P shows the profile configuration dialog box.

CTRL+O opens the profiles overview.

CTRL+E opens the dialog box for editing parameters.

CTRL + I shows the program version of the ELOas debugger.

CTRL+S brings the script contents into the foreground.

CTRL + G opens the filter function.

CTRL+L opens the log file.

CTRL+R opens the configured report file.

CTRL + F brings the "LogFactor5" window to the foreground.

CTRL + J opens the dialog box for selecting page jumps.

CTRL + W evaluates the selected text.

CTRL + ALT + L opens the "Go to line" dialog box. Enter the lines you want to navigate to here.

CTRL + ALT + R reloads the rules.

ALT + E opens the configured report file.

ALT + O opens the selected rule.

ALT + G jumps to the location where the rule is stored in ELO.

116 Processes and automation



Java libraries 

The following chapter contains a list of Java libraries included with the ELOas debugger.

No. Library Description

1. EloixClient.jar
Library for accessing the ELO Indexserver (Indexserver

interface)

2. eloserverutils.jar General ELO server utility classes

3. commons-lang-2.6.jar
Utility methods for frequent string operations, serialization, and

object reflection

4. commons-lang3-3.9.jar
Utility methods for frequent string operations, serialization, and

object reflection

5. aspose-cad-19.7.jar Library for creating and managing AutoCAD documents

6. aspose-cells-19.8.jar Library for creating and managing Microsoft Excel documents

7.
aspose-diagram-19.8-

jdk16.jar
Library for creating and managing Microsoft Visio documents

8. aspose-email-19.8-jdk16.jar Library for reading e-mail messages

9. aspose-words-19.9-jdk17.jar Library for creating and managing Microsoft Word documents

10. aspose-slides-19.9-jdk16.jar
Library for creating and managing Microsoft PowerPoint

documents

11. aspose.pdf-19.8.jar Library for creating and editing PDF files

12. aspose-barcode-19.8.jar Library for creating and reading barcodes

13. bcprov-jdk15on-1.52.jar Library for accessing encrypted documents

14. httpclient-4.4.jar Library for sending HTTP requests

15. httpcore-4.4.jar Library for sending HTTP requests

16. jai_codec.jar Library for image processing in Java

17. jai_core.jar Library with the main functions for image processing in Java

18. jai_imageio patch.jar Library for image processing in Java

19. log4j-1.2.17.jar Library for log outputs in Java applications

20. slf4j-log4j12-1.7.25.jar Library for log outputs

21. slf4j-api-1.7.25.jar SLF4J logger interface

22. jcl-over-slf4j-1.7.25.jar Library for migration to the SLF4J logger

23. rhino-1.7.12.jar Library for running JavaScript scripts

24. commons-io-2.7.jar Library with utility methods for frequent file operations

25. bcpkix-jdk15on-1.59.jar Library for editing encrypted Microsoft office documents

26. bcmail-jdk15on-1.59.jar Library for editing encrypted e-mails

27. bcprov-jdk15on-1.59.jar Library for editing encrypted Microsoft office documents

28. mlibwrapper_jai.jar Additional library for image processing in Java

29. jna.jar Library for accessing system resources

117 Processes and automation



No. Library Description

30. platform.jar Additional library for accessing system resources

31. forms-1.1.0.jar Library for creating layouts for graphic components

32. commons-codec-1.9.jar
Library with general encoder/decoder classes for base 64, hex,

and URLs

33. pdfbox-2.0.18.jar Library for accessing PDF files

34. fontbox-2.0.18.jar Library for PDF file fonts

35. xmpbox-2.0.18.jar Additional library for working with PDF documents

36. javax.mail-1.6.2.jar Library for sending e-mails

37. activation-1.1.1.jar Utility library for sending e-mails

38.
metadata-

extractor-2.13.0.jar
Library for reading metadata from image files

39. xmpcore-6.1.10.jar Library for editing, printing, and converting documents

40. db2jcc4.jar Library for the DB2 database driver

41. json-20190722.jar Library for creating JSON strings

42. gson-2.8.6.jar Additional library for creating JSON strings

43. sqljdbc4.jar Library for the Microsoft SQL Server database driver.

44. ojdbc6.jar Library for the Oracle database driver.

45. imgscalr-lib-4.2.jar Library for image scaling.

46. poi-4.1.0.jar Library for accessing Microsoft Office documents

47. poi-scratchpad-4.1.0.jar Additional library for accessing Microsoft Office documents

48. poi-ooxml-4.1.0.jar Additional library for accessing Microsoft Office documents

49. poi-ooxml-schemas-4.1.0.jar Additional library for accessing Microsoft Office documents

50. xmlbeans-3.0.1.jar Additional library for accessing Microsoft Office documents

51. commons-compress-1.18.jar Utility library for accessing Microsoft Office documents

52.
commons-

collections4-4.3.jar
Utility library for accessing Microsoft Office documents

53. core-3.4.0.jar Library for barcode recognition

54. javase-3.4.0.jar Another library for barcode recognition

55. fop.jar Library for converting XML files to PDF

56.
xmlgraphics-

commons-2.3.jar
Library for editing XML files

57. batik-all-1.10.jar Library for applications that use images in SVG format

58.
avalon-framework-

impl-4.3.1.jar
Library for creating and configuring components

59.
avalon-framework-

api-4.3.1.jar
Interface to the library for creating and configuring components

60. serializer-2.7.2.jar Library for serialization

61. xalan-2.7.2.jar Library for converting XML documents to HTML

118 Processes and automation



No. Library Description

62. xercesImpl-2.9.1.jar Library for an XML parser

63. xml-apis-1.3.04.jar Java API for XML operations

64. xml-apis-ext-1.3.04.jar Library for a DOM, SAX, and JAXP interface

65. jsch-0.1.55.jar Library for the Java implementation of SSH2

66. jacob.jar Library for accessing COM objects from a Java application

67. jacob-1.19-Lib.jar
Library with the Jacob DLLs for accessing COM objects from a

Java application

68. postgresqljdbc4.jar JDBC driver for the PostgreSQL database

69. quartz-2.3.0.jar Library for running processes at specific times

70. quartz-jobs-2.3.0.jar Additional library for running processes at specific times

119 Processes and automation



ELOas debugger on Linux 

The ELOas debugger 20 also comes as a complete package that is copied to the necessary position

in the file system. The debugger is run from the "ELOasDebug.sh" file.

Fig.: ELOas debugger for Linux package

120 Processes and automation



Other topics

Manual installation of ELOas 

This document describes the manual installation of ELO Automation Services (ELOas). Under

ELOprofessional, the module is created automatically by with the server installation. When

installing later, or in a distributed environment, however, it must be installed manually.

Like almost all modules in the ELOenterprise server line, ELOas is programmed as a servlet and

requires a Java Runtime Environment and an application server to run, such as Tomcat 9.0. Java

version 11 or higher is required.

The configuration is stored in the XML file config.xml in the default ELO configuration directory. This

allows updates to be performed without difficulty while retaining the original configuration. The

default language for ELOas is automatically set during the ELO Server server setup based on the

installation language selected and entered in the file config.xml in the language parameter. In the

following example, it is "en" for English:

The execution instructions of ELOas with the rulesets, translation lists, and basic scripts are located

in a folder in the repository. You need to define the connection to the ELO Indexserver and this

base folder in the configuration.

Required files 

You will find the following files in the ZIP archive for the manual installation:

ELOas.war

ELOas.xml

logback.xml

config.xml

ELO Automation Services Konfiguration.zip

Installation.pdf

JavaScriptCode.pdf

Regeldefinition.pdf

Preparing for installation 

Running ELOas requires the standard ELOas libraries in the "JavaScript" folder. Newer ELOas

versions automatically install the standard ELOas libraries on program start-up if they are not

already installed. The latest standard ELOas libraries can be downloaded and installed at any time

from the official scripting site:

<entry key="language">en</entry>

121 Processes and automation

http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html


Fig.: Rules folder in ELO

The Rules child folder contains the user-defined rulesets. A sample has been placed here that can

be used as a template for custom solutions.

The files ELOas.war and ELOas.xml should be renamed according to the repository name and the

ELO standard convention for service names, into as-<Name of repository>.war and as-<Name of

repository>.xml.

Thus, for the repository "elo20", they should be renamed "as-elo20.war" and "as-elo20.xml".

Pay attention to capitalization here, as this is important for later access. Both of these files

are copied to a temporary directory on the computer running the application server (such as

C:\TEMP).

In the ELOas.xml file, the path must be entered for the configuration directory of your ELO

environment:

For the files logback.xml and config.xml, a child directory is created in the ELO configuration

directory for this ELOas configuration, and both of these files are copied there.

• 

<?xml version='1.0' encoding='UTF-8'?>

<Context path="/as-elo20">

    <Environment name="webappconfigdir"

                 value="G:\ELOprofessional\config\as-elo20"

type="java.lang.String" override="false"/>

</Context>

122 Processes and automation



Fig.: ELOas configuration directory

The name of the configuration directory should start with "as-" and then contain the repository

name. Thus, for the repository "elo20", it should have the name "as-elo20". In the logback.xml file,

the path for the output directory must be adjusted for the local installation.

<file>C:/Programs/Tomcat 9.0/logs/as-elo20.log</file>

In the config.xml file, the parameters for Indexserver access must be adjusted:

The url key contains the access path to the ELO Indexserver. Once again, pay attention to

capitalization, as the ELO Indexserver will not be found if entered incorrectly.

The user key contains the ELO login name for ELOas on the ELO Indexserver. Normally, you should

create a separate account for additional services. This account should not be used by interactive

users.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>parameters for this web application</comment>

<entry key="url">http://testserver:8080/ix-elo20/ix</entry>

<entry key="user">Services</entry>

<entry key="password">130-167-2-31-129-121-203-174-234-167-21-87-88-80-78-122</entry>

<entry key="rootguid">(F6C173D7-3F71-4559-91E5-4886139B12CF)</entry>

</properties>

123 Processes and automation



The password key contains the ELO password. You can make this entry in plain text for testing

purposes. After starting the service, the report will then contain a notice of how the corresponding

encryption will appear. You can then apply this text from the log report to the configuration by

using cut and paste.

The rootguid key contains the GUID of the home folder of ELOas. The default value is the GUID of

the sample folder from the import data set. If you created your own folder for this data, you can

easily get the GUID by running the following script in the ELO Windows Client (GetGuid.vsb file in

the ZIP archive):

This script finds the GUID of the currently selected entry and copies the GUID to the Windows

Clipboard. From there, you can apply it to the configuration by opening it in a text editor and

pressing CTRL-V.

The rootguid key is also used to configure several ELOas instances. You can run up to ten ELOas

instances. For each instance, create an "ELOas Base" folder in the repository under <Name of

repository> // Administration. For each individual "ELOas Base" folder in the config.xml file, create

separate rootguid parameters as in the following example:

The ELOas rules in the individual "ELOas Base" folders are then executed separately. If you are

running multiple instances, the logs are also written to a log file. The path of the log file is defined

in the configuration file logback.xml.

The tempdir key contains an optional directory for temporarily downloading the text files if the XML

and JavaScript data has been placed in text files instead of the extra text. If tempdir is empty or

does not exist, the extra text version is used; otherwise the text file version is preferred.

Set Elo=CreateObject("ELO.professional")

if Elo.SelectView(0)=1 then

    Id=Elo.GetEntryId(-1)

    if Id>1 then

        if Elo.PrepareObjectEx( Id, 0, 0 ) > 0 then

            call Elo.ToClipboard(Elo.ObjGuid)

            MsgBox Elo.ObjGuid

        end if

    end if

end if

<entry key="rootguid">(F6C173D7-3F71-4559-91E5-4886139B12CF)</entry>

<entry key="rootguid1">(D6EF1F0B-ADE4-C3E2-74F9-3658ED55449A)</entry>

<entry key="rootguid2">(2CFDEA54-3DA9-E567-F335-6F3D223C9BAF)</entry>

<entry key="tempdir">C:\Temp\ELOas</entry>

124 Processes and automation



Please note

When creating a new user for this service, the ELO Indexserver does not respond to the

change immediately. To ensure that it works, you can clear the user cache on the status

page of the ELO Indexserver to force an immediate update.

Deploying the files 

In the Application Server, now enter the parameters for the deployment. The context path (which

is not optional, even if it says so in the Tomcat configuration) contains the name of the web

application. The two file paths point to the configuration and program file. Clicking Install will

install the application.

Fig.: Entering parameters for the deployment

The "ELOas.war" file in the current ELOas version contains a text file named "version.txt". This file

contains extensions for the individual ELOas versions.

Displaying the status page 

ELOas has its own status page, which can be reached via the following URL:

http://<SERVERNAME>:9070/as-<NAME OF REPOSITORY>/as?cmd=status

125 Processes and automation



Fig.: ELOas status page with active rules

The status page lists all active rulesets together with information about how often they have

already been run and when the next planned run takes place.

If a JavaScript error occurs, it will be displayed on the status page as well, together with the line

number of the error and the program code in this area.

126 Processes and automation



Fig.: Applying changes with 'Reload'

Changes to rules or enclosure scripts in the repository can be applied by clicking Reload without

restarting the server.

127 Processes and automation



Fig.: ELO Automation Services reload report

Clicking Back to Status Page returns to the normal status display.

On the Insert tab, the catalogs contain elements that should be coordinated with the general

document layout. With the help of these catalogs, you can insert tables, headers, footers, lists,

cover sheets, and miscellaneous other document boilerplates.

128 Processes and automation



Installing multiple ELOas instances 

It is possible to install multiple instances of ELO Automation Services for a single repository (ELO

Document Manager) in ELOenterprise environments. However, since ELOas is designed to use a

fixed GUID for its ruleset folder in the repository, the normal ELO server setup program cannot be

used to install multiple instances of ELOas in the same repository. It is not possible for multiple

ELOas instances to share the same base folder.

To install additional ELO Automation Services instances for a repository, proceed as follows.

Create a copy of the ELOas Base folder.

Fig.: Second ELOas Base folder

Copy the GUID of the new ELOas Base folder to a text editor.

1. 

2. 

129 Processes and automation



Fig.: GUID of the second ELOas Base folder

Stop the instance of Tomcat where you want to install the new ELOas instance.

Go to the web application configuration directory (<tomcat

install>\conf\Catalina\localhost) and copy the application's XML file. In this example, as-

EXTEN01.xml is copied to as-EXTEN02.xml.

Information

It is also possible to copy the ELOas configuration file to a different Tomcat server.

Open the copied .XML file in a text editor and change the entry for webappconfigdir and 

Context path to accommodate the new ELOas instance. In this example, it would be:

Now navigate to the config directory as defined in the previous step. Copy the original

configuration directory for ELOas to create a new configuration directory for the new

instance.

3. 

4. 

1. 

<Context docBase="E:\ELO\prog\webapps\as.war" path="/as-EXTEN2" unpackWAR="true">

<Environment name="webappconfigdir" override="false" type="java.lang.String" value="E:\ELO\config\as-EXTEN2

</Context>

2. 

130 Processes and automation



Fig.: Copied and renamed directory

Open the new directory, then open the config.xml file in a text editor.

Fig.: Modified GUID for the second ELOas instance

Change the rootguid entry so that the GUID is identical to that of the repository folder

named in step 2:

Open the logback.xml file in the same directory and define a different name for the log file.

Start the ELO Application Server (Tomcat).

3. 

4. 

5. 

6. 

131 Processes and automation



Fig.: Second ELOas instance on the ELO server

In the Tomcat Server Manager, check that the new ELOas instance is running properly.1. 

132 Processes and automation



Installing ELOas libraries 

ELO Automation Services contains a number of libraries in the default configuration. However, it is

recommended to install multiple JavaScript libraries to ensure maximum functionality. These

libraries are available separately and are updated regularly.

First, you need to import these libraries into your repository.

Fig.: ELOas Base folder in the tree

Make sure that the libraries are not already installed in your repository. These JavaScript files are

stored in the following folder:

Administration//ELOas Base//JavaScript

If there are already JavaScript files in that folder, first make sure that they have not been

customized for your environment. If not, delete them before performing the update.

Install the ELOas libraries from the ELO SupportWeb at: http://www.forum.elo.com/script/20/

eloinst.html.

133 Processes and automation

http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html

	Table of contents
	Basics
	How ELOas works
	Search methods (index search, treewalk, task list, mailbox, timestamp)


	Rulesets
	Basics
	Rule processing

	Create ruleset via ELO Administration Console
	Advanced search
	Target forms for rules selection
	Interval control
	Includes
	Rules
	Error handling

	Options and error handling
	Pause rules
	Error message "Invalid Ruleset"
	Problem 1
	Problem 2


	Manual start of a ruleset
	Example
	Activating the ruleset
	Other notes
	Triggering rulesets asynchronously
	Triggering rulesets synchronously
	Permissions check
	Order of operations


	The rule structure
	General structure
	All entries in the <base> section
	All entries in the '<search>' section
	All entries in the '<rule>' section
	Changing permissions

	Notes
	Sample structure


	Programming
	Programming with ELO Automation Services
	Script execution
	Creating custom modules
	Lazy initialization

	ELOas JavaDoc
	Debugging
	Syntax errors in the script
	Logical or runtime errors

	Standard modules
	cnt: ELO Counter Access
	cnt: Available functions

	db:DB Access
	db: Available functions
	Imports
	Connection parameters
	JavaScript code

	dex: Document Export
	dex: Available functions
	dex: JavaScript code

	ix: IndexServer functions
	ix: Available functions

	wf: Workflow Utils
	wf: Available functions

	mail: Mail Utils
	mail: Available functions for reading a mailbox
	Available functions for sending e-mails

	fu: File Utils
	fu: Available functions

	run: Runtime Utilities


	Examples
	Example – Moving a document
	Example: e-mail folder monitoring
	General approach
	Establishing the connection
	Create ruleset

	Monitored processing
	Marking instead of deleting
	nextImap_GMAIL
	finalizeImap_GMAIL


	Example – migrating a document database
	Example - Treewalk for ELOas
	Introduction
	Usage example
	Runtime environment variables

	Example - Workflow processing

	Filing via ELO Dropzone
	ELOas filing via ELO Dropzone tiles
	Step by step


	Barcode
	Introduction
	Reading barcodes with the Softek library
	Barcodes formats in the Softek library
	Example for reading a QR code

	Reading barcodes with the ZXing library
	Barcodes formats in the ZXing library

	Creating barcodes with the ZXing library

	Debugger
	ELOas debugger
	Opening the program
	Configuration
	Editing a ruleset


	Debugger (Java FX)
	Opening the program
	Use with OpenJDK
	Displaying the debugger on high-resolution screens

	User interface
	Searching rule contents
	Status reports
	Program information

	Starting an ELOas rule
	Profiles
	Using ELOas debugger profiles
	Profile overview
	Information on the selected profile
	Editing profiles
	Editing direct rules
	Changing profiles

	Keyboard shortcuts
	Java libraries
	ELOas debugger on Linux

	Other topics
	Manual installation of ELOas
	Required files
	Preparing for installation
	Deploying the files
	Displaying the status page

	Installing multiple ELOas instances
	Installing ELOas libraries


