Processes and automation

ELO Automation Services

Processes and automation

Table of contents

Basics
How ELOas works
Rulesets

Basics

Create ruleset via ELO Administration Console
Options and error handling

Manual start of a ruleset

The rule structure

Programming

Programming with ELO Automation Services
ELOas JavaDoc

Debugging

Standard modules

Examples

Example - Moving a document

Example: e-mail folder monitoring
Example - migrating a document database
Example - Treewalk for ELOas

Example - Workflow processing

Filing via ELO Dropzone
ELOas filing via ELO Dropzone tiles
Barcode

Introduction

Reading barcodes with the Softek library
Reading barcodes with the ZXing library
Creating barcodes with the ZXing library

Debugger

ELOas debugger

Debugger (Java FX)
Opening the program
User interface
Starting an ELOas rule
Profiles
Keyboard shortcuts

12
14
20

28

28
34
35
40

68

68
72
78
82
87

20
90
24

94
95
97
99

100

100

105
105
106
109
110
116

n Processes and automation

Java libraries 117
ELOas debugger on Linux 120
Other topics 121
Manual installation of ELOas 121
Installing multiple ELOas instances 129

Installing ELOas libraries 133

n Processes and automation

Basics

How ELOas works

ELOas is a servlet that can post-process any number of ELO documents in a background process.
This includes applying metadata from other data sources, moving documents, or setting up filing
structures. Thanks to this flexibility, a number of other functions can also be created via the
integrated JavaScript interface.

Forming the basis for processing, a ruleset consists of an XML configuration created via a graphical
user interface in the ELO Administration Console. Multiple rulesets can be defined, which are
executed in sequence with their own interval controls ("Every 10 minutes”, "Daily at 1 PM", "Every
3rd day of the month"). Furthermore, the ruleset contains a search query and a sequence of rules
for processing data.

- @ELOasBase
.| Direct
.| Java
> D]JavaScript

.| OptionalJsLibs

- lj Rules

7] LGUT_Export_mit_XML

[AN_Export_mit_XML
[%] KREC_Export_mit_XML
[RE_Export_mit_XML
5] KGUT_Export_mit_XML
[7) STB_Export_mit_XML

5] INV_Export_mit_XML

) CheckTR

Fig.: Rules folder in ELO

ELOas activates every ruleset in its list within "ELOas\Rules" in a rotating sequence. For each
ruleset, ELOas first checks whether the interval condition is met (has it been at least 10 minutes
since it last was run?). If it isn't met, the next ruleset is processed. If, however, the execution time

= Processes and automation

has been reached, the specified search is performed. The ruleset now runs for each entry in the
results list. You can change the target in ELO, enter metadata, or perform other actions here. Next,
the document is saved and the following entry is processed until the end of the list of results has
been reached. Finally, the new execution time is calculated and the server processes the next
ruleset.

Additional rulesets can easily be added via the graphical user interface. Just as with changed
rulesets, they only become active once the configuration is reloaded.

The XML configuration of the rules and the JavaScript code can be saved in a document file instead
of on the Extra text tab of the metadata. In this case, you will see text files instead of folders for
child entries in the tree.

An additional type of ruleset was introduced for ELOwf: the direct function call. These rulesets are
created in their own folder called Direct, run in their own thread, and return a direct result. For this
reason, they must not be defined with an interval, but must rather be created with a trigger (0
minutes: use OM as interval). Additionally, you should only execute short actions here, as the called
process has to wait for a result and cancels it after a specified timeout.

Search methods (index search, treewalk, task list, mailbox, timestamp)

ELOas is mainly designed to process a list of results from an index search. Over time, additional
options have been added, which can be selected by naming the SEARCHNAME correspondingly.

TREEWALK: The object ID or ARCPATH to the start object is configured in SEARCHVALUE. It runs
through the entire branch, and the ruleset is called for each entry with the corresponding metadata
form.

WORKFLOW: All of the ELOas user's workflow tasks are read and the ruleset is called for each entry
with the corresponding metadata form. The ruleset can also forward the workflow.

MAILBOX_<Profile name>: A connection to the e-mail server is established using the profile name,
and the mailbox contents are read and processed. The ruleset is called for each e-mail message in
the mailbox with an empty document.

DIRECT: This ruleset can be called via http-get and returns a direct result. Rulesets of this type can
only be defined in the Direct folder and not in Rules, as they have to be executed in another
thread.

TIMESTAMP: This call performs a search following the last change. Normally, you enter a range as
the search term: "2012.01.01.00.0.00... 2012.01.31.23.59.59".

n Processes and automation

Rulesets

Basics

The program executes rules at regular intervals to carry out defined tasks in ELO.

Rules are written in JavaScript and are executed by the Indexserver at specified intervals.
Rule processing

1. The program first searches for objects in ELO that match the rule definition.

2. The rule is applied to all elements found in ELO.

Information

The setting for the documents to be searched is defined in the search fields.

1. If a rule does not match, it cannot be applied or executed. An error message appears.

The defined rules are filed in ELO under Administration > Rules.

Information

Rules are split into two parts in the ELO Administration Console. In the Rules area, you will
find the box Rule 1, where the steps to be executed are described. It contains information
about what to do with each object found. The Global error rule box defines what should
happen if errors occur.

Processes and automation

Create ruleset via ELO Administration Console

In the ELO Administration Console, you create new rulesets in the ELO Automation Services area.

ELOas Base
Name Search for
Name

ELOxcMoveAsync ELOxcMoveAsync

[©
XQ o

Search
form

naex

searcn

Search
term

Search 18
v
max.

Advanced search
Target forms for rules selection
Interval control

Includes

v vV vV VvV Vv

Rules

Fig.: 'ELO Automation Services' menu item

Add (green plus icon): Click the Add button to create a new ruleset.

Information

E-mail v

DIRECT v

ID

2532033C-D501-33DB-4071-A5632C935739

Once you have saved it, the new ruleset is stored in the Rules folder of ELO. You can

configure the rulesets in the Rules area.

Reload data from server (yellow circle arrow icon): Click the Reload data from server button to

reload the area.

Delete (red X icon): Click the Delete button to delete the selected ruleset.

n Processes and automation

me | °

Search Free entry v
form
Index DIRECT v
search
Search
term
Search 200 =
v

max.

> Advanced search
> Target forms for rules selection

Interval control

v

Includes

v

Rules

v

Fig.: New ruleset

Name: The name of the ruleset that you entered when you created the rule is shown here. The
name can be modified later.

Please note

Not all characters are allowed. Refer to the following list.

|

o/
°\

Search form: Select the search form that will be used to find documents to be processed.
Index search: Select a group field to search across different fields.

Search term: Enter the character string you want to search for here. All documents in ELO that
correspond to the defined rules will be selected in accordance with the rules and criteria defined in
the wizard. The character string must be entered in quotation marks.

Search max: Enter the maximum number of search results here.

Processes and automation

Advanced search

From filing date ... to: You can narrow down the search here by selecting a specific filing date or a

filing period.

From date ... to: You can narrow down the search here by selecting a specific date or period.

Target forms for rules selection

Add target form: This is where you can select the metadata form for the target folder that moved

documents are filed to.

Interval control

In the Interval control area, you define how often you want to run ELO Automation Services.

v Interval control

Type
Interval Every
L] Once eve
Once every Day
Start
End

Fig.: 'Interval control' area

Start: This input box contains script code that will be executed before running the ruleset.

End: This box contains script code that will be executed after running the ruleset.

Includes

Add Include library: In the Add Include library field, you can add any script libraries that you need

to the ELOas rule.

n Processes and automation

Rules

v Rules

Rule 1 + + X O
Wizard Script

Name Rule 1
Condition v

Filing path

Target form v

Index fields ©

Fig.: 'Rules' area

This rule will be applied to all entries found in ELO. This is where you define settings such as where
documents are moved.

Add (green plus icon): Add a new rule. The rules will be processed in sequence.
Name: Enter a name for the rule.
Condition: The query rule is defined here to check the status of a field, for example.

In this menu, you can select a script, e.g. to move files to the file system. Scripts are filed to the
administration area of ELO Automation Services in ELO.

Please note

The configuration in your repository can differ from the illustrations shown here.
Filing path: Specify where you want to file the document to. Use the button at the end of the input
field to enter separator characters for paths in ELO.
Target form: Select the metadata form for the document.

Fields: You can replace the content of fields in the metadata of the target documents here.

Information

If you switch to the Script tab, you make all the rule settings using a script. If you do so, you
can no longer access the Rule tab.
Error handling

You can define the basic settings for handling errors in the Global Error Rule area. This rule is
executed when an error occurs in a general rule.

H Processes and automation

Global Error Rule ¥ + X ©
Wizard Script

Name Global Error Rule
Condition OnError v
Filing path Add data
q
Target form v
Fields ©

Fig.: Defining basic error handling

Name: The name of the error handling routine is entered here.

Condition: A condition for an error rule is defined here.

Filing path: Set the filing path of the error report in the repository here.

Target form: Select the metadata form of the document with the error log.

Fields: This option enables you to define individual fields that you can assign a specific character

string on filing.

Please note

If a ruleset is invalid, it cannot be saved. The validity of a ruleset is verified when saving.

H Processes and automation

Options and error handling

Pause rules

You can trigger and stop individual rulesets via a link in the browser.

You can access the ELO Automation Services status page via the respective ELO Application Server
manager or via the URL with the following structure:

http(s)://<server name>:<port>/as-<repository name>/?cmd=status

ELO Automation Services status report,
Version 20.00.000 Build #<'=&

No active ruleset, pausing

Excecuted Name Next run Run Action Status
154 Move newsletter 2020-04-06 11:34:31.295| Stop |Reload Idle...
Direct Pool 11
Reload all

Fig.: Deactivate a rule with a stop link

If the user clicks Stop, the running process is stopped for the corresponding ruleset. Click Start to
restart the process.

Please note

The status page updates automatically every 10 seconds. After clicking Start or Stop, this
command will be sent every 10 seconds. In normal operation, this does not cause any
problems. However, if you have the same status page open in multiple browser windows,
you may encounter problems or unexpected behavior if you enter different settings to the
different windows.

H Processes and automation

Error message "Invalid Ruleset”

Problem 1

ELO Automation Services (ELOas) runs but the following error message is displayed in the log file:
Invalid Ruleset suspended: org.xml.sax.SAXException: Invalid ruleset definition: Premature end of
file.

Even though the rules are defined correctly (correct spelling, no error while parsing the xml
document in the browser), the file cannot be read by ELO Automation Services, i.e. the request
takes place but an empty document is triggered (as can be seen by the empty lines of the log file)
and an error message appears. Check whether the ELOas user has sufficient rights. Check whether
the ELO Indexserver and Document Manager of the repository in question have errors in their log
files. You can test the rule with another client. Instead of saving the script in a .txt file in the Rules
folder, save it as a separate folder in Rules (in the extra text of the folder) so that the script is
regarded as a database entry.

Another approach is to check whether the latest version of ELO Automation Services is in use and
whether the following entry exists in the XML file under <installation path>\config\as-<repository
name><name of server instance>\config.xml:

<entry key="tempdir"> ... </entry>

This temporary directory must exist, as otherwise an error message will appear. The user must
have write access to the temp directory at the system level.

Problem 2

When creating a second rule, not every group field is available in the drop-down menu on the first
attempt.

In this case, you need to close and start the ELO Administration Console again. Warning: This does
not apply for the first rule you created!

n Processes and automation

Manual start of a ruleset

Normally, ELOas executes the defined rulesets based on intervals. However, there are processes
that are so complex in their execution that they cannot be run in short intervals. Still, they must
become active as quickly as possible after a certain change has taken place. There is an option to
manually execute a ruleset through a URL (or rather, via script).

If you execute rules via an "HTTP-GET" or "HTTP-RUN" command in ELOas 20, they need to be
validated with a ticket. You need to attach a valid ticket to the corresponding ELOas URL, e.qg:

http://localhost:9060/ELOas/actions?
cmd=get&name=test&ticket=935666A2E27D8AB642C4C40AFAEAE2B9

You can turn off the internal ticket validation with the new ELOas configuration parameter
checkTicket.

[__}(C:\ELOenterprise20\config\as-LocalArchive\ELO-PCVLADOVM-3\config.xml - Notepad++ - O X
File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window ? X
cHEHER a8l simhEh ey ax BE(1 ERERPo® @ ED
[:kommxmlﬂl

1 <?xml version="1.0" encoding="UTF-8"?2>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
3 H<properties>
4 <comment>Webapp properties</comment>
5 <entry key="password">elo</entry>

6 <entry kev="tempdir">C:\ELOenterprise20\temp\as-LocalArchive\ELO-PCVLADOVM-3</entry>
7 <entry key="language">de</entry>
: <entry key="user">ELO Service</entry>

9 <entry ="rootguid"> (F6C173D7-3F71-4559-91E5-4886139B12CF) </entry>
10 <entry ="url">http://PCVLADOVM: 9090/ix-LocalArchive/ix</entry>

11 <entry key="checkTicket">false</entry>

12 -</properties>

eXtensik length: 549 lines: 13 Ln:11 Col:39 Sel:0|0 Windows (CRLF) UTF-8 INS

Fig.: config.xml

Important

Using ELOas in proxy mode with disabled ticket validation poses a security risk, especially if
the ELO Indexserver is available on the Internet.

Example

The following example shows how to call a ruleset from a client script, which then changes specific
objects.

E Processes and automation

Warning: As the call takes place via http access, any user can trigger this action from the browser
or via a script command. For this reason, you need to ensure that the function cannot be misused
(such as by verifying the user number or through a fixed internal preset of the object ID).

First, the ruleset in use must be considered. By entering an interval of 0 minutes (<interval>0H</
interval>), this ruleset will be defined as triggered manually. Thus, it will not be called cyclically,
but will rather wait until a specific URL is received.

ruleset
base
name>Expand Name</name
search
name>"0BJIDS"</name
value></value
mask>2</mask
max>200</max
search
interval>0H</interval
base
rule
name>Expand Name</name
condition condition
script
log.debug("Paraml: " + EM PARAM1);

log.debug("UserId: " + EM USERID);

NAME = "Approved: " + NAME;

EM_WRITE_CHANGED = true;

script
rule
rule
name>Global Error Rule</name
condition>0nError</condition
script></script
rule

ruleset

The interesting part is found in the script area:

n Processes and automation

script
log.debug("Paraml: " + EM PARAM1);

log.debug("UserId: " + EM USERID);

The call can provide up to three parameters. These can be queried from the ruleset using the
variables EM_PARAM1, EM_PARAM2, and EM_PARAM3. In addition, the script can optionally provide the
ticket of the current login for authentication. In this case, the number of the logged on user is
entered to the variable EM_USERID. If no user has been authenticated, the number -1 is entered. In
the first parameter, one or more object IDs can be transferred. These will then overwrite the search
value from the ruleset definition. In this case, "OBJIDS" must be specified as the name for the
metadata field.

NAME = "Approved: " + NAME;

In the example, the short nhame of the selected object is preceded with the text "Approved". Any
other changes to the SORD object can be made here.

EM WRITE CHANGED = true;
As the object has been changed, it should also be saved.

script

Activating the ruleset

After starting ELOas, this ruleset is started, but not yet active. It waits for an external trigger
(visible by the text "Trigger" in the Next run field).

17 Processes and automation

ELO Automation Services 20.00 X

= C ® © @ localhost:9096/ELOas/?cmd=status oo w mw o & =
ELO Automation Services status report, Version 20.00.000
Build 008
No active ruleset, pausing
Excecuted Name Next run Run Action Status
0 LGUT_Export_mit_XML 2020-03-13 17:32:00.0 Stop Reload
0 AN_Export_mit_XML 2020-03-13 17:34:00.0 Stop Reload
0 KREC_Export_mit_XML 2020-03-13 17:36:00.0 Stop Reload
0 LREC_Export_mit_XML 2020-03-13 17:30:00.0 Stop Reload
0 KGUT_Export_mit_XML 2020-03-13 17:38:00.0 Stop Reload
0 STB_Export_mit_ XML 2020-03-13 17:40:00.0 Stop Reload
0 INV_Export_mit_ XML 2020-03-13 17:33:00.0 Stop Reload
0 CheckTR Trigger Stop Reload

Invalid ruleset or not loaded yet - ignored
0 WifFormularToPdf Trigger Stop Reload
Direct Pool

1/2

0 BarcodeRecognition Trigger Direct Reload
0 TestConvertToPdf Trigger Direct Reload
Reload all

Fig.: ELOas status page

The trigger is either initiated from a URL, or from the Windows Client by using a script command
(starting with version 7.00.056 of the client):

SendELOasRequest(<server name>, <port number>, <service name>, <with ticket>, <ruleset name>, <

The SendELOasRequest command performs an asynchronous call with run. Such rulesets are shown
in the ELO Administration Console under Rules, instead of Direct.

Server name Name or IP address of the ELOas server.
Port number Port number of the ELOas server. Normally 8080, standard http port.

Service name of the ELOas server. In a standard installation, it is created by
combining the prefix "as-" and the repository name (e.g. as-ELO). However, make
sure to use the correct capitalization, as otherwise the Tomcat server will return
an error.

Service name

With ticket 0. Do not send logon information

H Processes and automation

1: Send current ticket as logon information. In this case, ELOas checks the ticket
and identifies the user number. This information is provided to the ruleset. The
ruleset can then decide whether and to what extent the action will be run.

The logon information for SSO cannot be evaluated at present. This will be
changed in the next version of the ELO Indexserver.

Name of the ruleset to be run. Only triggered rulesets can be called in this way.

Ruleset Name . .
The call is ignored for interval-controlled rulesets.

First parameter. If this parameter is not empty, it is used as a search term when

Parameterl .

the ruleset is run.
Parameter2, Additional optional parameters. These can be queried by the ruleset and control
Parameter3 how it is run.

The complete sample script for such a call could therefore look like the following. It calls the
Expand Name ruleset for the objects with Objld 7944 and 7945.

Set Elo=CreateObject("Elo.Professional")
MsgBox Elo.SendELOasRequest("localhost", 8084, "/ELOmover/as" , 1, "Expand Name", "7944,7945", "

The ruleset can also be triggered from any other application by calling a URL:

http://localhost:8084/ELOmover/as?
cmd=run& ; name=Expand%20Name& ; paraml=7944,7945& param2=TestParam?2

Please note

In this case, you cannot transfer any authentication information. Ensure in your ruleset that
the action cannot be misused.

Other notes
Triggering rulesets asynchronously

When a ruleset is triggered by a URL or a script call, ELOas runs it asynchronously. Thus, if another
ruleset is currently active, script execution will not be delayed for as long as it takes for ELOas to
become available again. Instead, the activation command is placed in a queue and then run at the
next opportunity.

This has two consequences: first, the client script cannot assume that the operation has actually
been performed just because the command has been processed. If this is important for the further
course of the script, it must be checked by the script itself and integrated into the queue. However,
please note that a situation may occur where ELOas is also processing other very complex actions
at the same time. Generally, a script should therefore not wait for the completion of an ELOas
action.

E Processes and automation

It is also possible that an impatient user may initiate the trigger multiple times. In this case, the
ruleset will also be run multiple times. For this reason, it is necessary to ensure that repeat
triggering does not lead to errors, such as by checking the object in advance and then canceling
any repeated runs.

Triggering rulesets asynchronously also leads to another problem: Errors that occurred while
processing the ruleset cannot be reported using the script call.

Triggering rulesets synchronously

With synchronous triggering, the ruleset is initiated directly and can also return a result.
Synchronous triggering is used primarily by ELO workflows (form editor). With the call, cmd=get is
required instead of cmd=run. In addition, the rulesets for the synchronous call must not be placed in
the Rules folder, but rather in the Direct folder. Synchronous rulesets are run independently from
the asynchronous ruleset in their own thread.

Permissions check

When being called from the ELO Windows Client, the client authentication ticket can be optionally
transmitted as well. In this case, ELOas can check the login and ascertain the current user. For
critical actions, a test to determine whether it is being run by a user with sufficient rights must be
performed. If no user is logged in or the user does not have sufficient rights, execution should be
canceled.

However, in certain cases, anonymous triggering may be completely acceptable, such as when a
specific predefined object is being edited. This is the case, for example, when a specific predefined
object is being edited. In this case, care should be taken to ensure the Objectld cannot be changed
by the call. This can most easily take place in an onstart event by setting the value
EM_SEARCHVALUE in the script. In this case, the preset value from the ruleset script is used for the
search instead of the parameter.

Order of operations

A manually triggered ruleset inserts itself quite normally to the order of operations for the rulesets.
If multiple triggers have been activated for a ruleset, all triggers are processed first before the next
ruleset is processed.

n Processes and automation

The rule structure

This section describes the XML rule structure in ELOas. Normally, this structure is maintained using
a graphical user interface or GUI. If you have to make manual changes, you can use this
description as a reference. At the same time, this description serves as a reference for
implementing the GUIL.

General structure

The complete structure is embedded in the <ruleset> tag. This consists of two parts: a <base>
entry at the beginning, followed by any number of <rule> entries.

The <base> entry contains the information to search for the entries to be processed. These include
the search rows, the search term, forms, and date restrictions.

The <rule> entries contain one processing instruction each. You can assign each rule a condition,
change the filing target, or change the contents of the fields. Additionally, a rule can also have
JavaScript contents. If defined as such, the other entries are ignored, but they can have values.

If the condition of a rule is "OnError", this rule is processed as an error handling rule. An error
handling process can take place after every rule, and at the very end an error handling rule must
be entered. These final error rules are called if an error occurs when moving or saving a file. If an
error occurs during processing within a normal rule, the next possible error handling rule is called
and processing is canceled.

Example of a simple ruleset:

ruleset
base
name>Name of the ruleset</name
search
name>Metadata field name in JavaScript code</name
value>Search term in JavaScript code.</value
mask>Number of the metadata form for the search.</mask
search
interval>5M</interval
base
rule
name>Name of the rule</name
destination mask="Folder form"> New target in JavaScript Code</destination
index
name>Metadata field name in JavaScript code</name
value>New contents of the metadata field in JavaScript code</value
index
rule

rule

H Processes and automation

name>Name of the error handling rule</name

condition>0nError</condition
rule

ruleset

All entries in the <base> section

Tag Function Example

Name of the ruleset. This name is displayed on the status page, but ,
name SAP processing
is not processed further.

Parameter for searching for the documents to be processed. For a
search description, see the following section All entries in the '<search>'
section

If you have to switch to another metadata form during the course of <mask>3</
masks processing, all possible target form (mask) numbers have to be listed mask><mask>4</
here. Each form number is framed with a <mask> tag. mask>

Repetition interval for processing the search. This interval can be

entered in minutes (5M) or hours (1H). Further, it can also be run

once a day at a specific time (15:30), once per week (17:20/SA), or 5M1H15:3017:20/
once a month (22:00/31). If a day is specified for monthly execution SA22:00/31

that does not exist for the current month (e.g. the 31st of February),

the last day of the month is used instead.

interval

All entries in the '<search>' section

The entries in the <search> section determine which documents are processed. At the start of each
pass, a search is performed with these parameters. The list of results is processed according to the
rules.

search

name>Metadata field name in JavaScript code</name
value>Search term in JavaScript code</value
mask>Number of the metadata form for the search.</mask
max>Maximum number of documents per pass</max

search

Day Function Example

Metadata field name in JavaScript code If the name is fixed,
name text can be entered directly in quotation marks. However, any "ELOOUTL2"
JavaScript expression can be used as well.

Search term in JavaScript code. If the value is fixed, text can
value be entered directly in quotation marks. However, any "ELO*"
JavaScript expression can be used as well.

Processes and automation

Day

mask

max

idatexdate

All entries

Function Example

Number of the metadata form for the search. Only a metadata
form can be used here, and not a pure search form, as it is
assumed that all matches have the same form definition
during read-in.

Maximum number of documents per pass sending a search
query to the ELO Indexserver. If more matches exist, they are
processed in a later pass after all other rulesets have been
run. This prevents an extensive ruleset from suppressing the
processing of all other rulesets. A maximum of 1000
documents per pass are allowed.

200

The list of results can be restricted through a date range in the

filing date (idate) or document date (xdate). This date can

either be entered in absolute values in the ISO date format
(YYYYMMDD) or in values relative to the current day (-5). The .
range consists of a start date in a <from> tag, and an end date ldate>
in a <to> tag.

<idate><from>-5</
from><to>+0</to></

in the '<rule>' section

After the <base> section, any number of <rule\> sections can follow. These are run in the order of
the definition during processing.

A rule can exist in two different forms: as a normal rule and as an error rule. Such an error rule is
simply skipped in the normal course of events. The next available error rule is only called in case of
an error, and afterwards the processing of this document is canceled. This means that after an

error rule is

processed, no further rules will be processed.

The last rule in the <rule\> chain must always be an error rule. This ensures that error handling is
always available in every case. Additionally, this rule is called if an error occurs while moving or
saving a file.

Tag

name

condition

Function Example

Name of the rule, only be used for documentation and

Additional indexin
to better understand its function. 9

Processing condition for the rule. If this is an error rule,
the fixed text "OnError" is entered here. Note that it
must be written exactly in this way, as otherwise the
rule will not be recognized as an error rule.

KDNR == "123"

The execution condition is provided in the form of
JavaScript code. The rule is only run if the condition is
"true".

E Processes and automation

Tag Function Example

New filing target of the document as the repository
path. This entry is optional and can remain empty. In) ,
. S . _ <destination mask="1">
... this case, the document remains in its original position. ,
destination . .) ! . YELOMMailsq" + ELOOUTL1</
If there are multiple destination rules, the first target is destinations
used as a new filing location, and all additional targets

are entered as references to the first.

If a filing target does not yet exist, it is created
automatically.

The destination tag can also contain an additional
"mask" attribute with the number of the folder
metadata form for newly created folders. If this attribute
is not available, "1" is used by default, which is the
number of the folder form in a standard repository.

New document metadata form If this entry is not
mask available or the form number is -1, the original <mask>20</mask>
metadata form is retained.

If the form is changed, all entries are automatically
applied with the same group name. This is also
executed correctly if the metadata fields are divided up
differently between forms.

If the original metadata form contained fields that the
new form does not have, this data is automatically
discarded without returning an error message.

ELOas cannot process documents with metadata forms

that use the same group names for multiple entries, as

the internal processing and structure of the rules

assume a unique assignment.

Any number of index entries can exist within a rule Each <index><name>DOCDATE</
index index entry contains the name of the relevant field and name> <value>"20070930"</

a JavaScript expression with the new value. value></index>

Fields with an ISO date and fields for the filing and

document date also require the in ISO date format.

In addition to the fields with the group names of the

search form, all group names of the alternative

metadata forms are available, as well as a number of

pseudo-fields with standard values for metadata:

NAME: Short name

DOCDATE: Document date

ABLDATE: Filing date

ARCHIVINGMODE: Document status 0, 1, or 2 for

"Version control disabled", "Version control enabled", or
"Non-modifiable".

n Processes and automation

Tag Function Example

ACL: With "PARENT", apply the ACL of the new filing
target. With <rights>:<name>, define any number of
group rights.

OBJCOLOR: Color number of the entry
OBJDESC: Extra text

OBJTYPE: Document or folder type of the entry.
Information: An incorrect assignment can lead to
disruptions in further processing. Documents can only
have an OBJTYPE between 254 and 286.

A rule can also contain JavaScript code to be run. In this
script case, all other parameters of this rule are ignored, but
they can be retained, e.g. for documentation purposes.

Changing permissions

Changed permissions can be configured in the ACL pseudo-metadata field. In the simplest case,
enter "PARENT" here, which will then apply the rights of the target folder to this entry when it is
saved. However, a complete list of rights can also be configured here. This list consists of a
sequence of individual rights that are separated by a pilcrow symbol. Each individual right consists
of the rights form (RWDELP - read, write, delete, edit, list, permissions), followed by a colon and
the group name. For AND groups, enter a sequence of names, each separated by a colon, instead
of the simple group name.

R:EveryonefRW:ControllingRWDELP:Administration:Stuttgart:Management

In the example, the Everyone group has read access, the Controlling group has read and write
access, and the AND group Administration and Stuttgart and Management has full access to the
document.

If you want to set rights for a user instead of for a group, add "U" to the list of rights as well.

UR:Administrator

Notes

When generating the JavaScript code, all group names of the search form and the alternative
metadata forms are entered as variables in all caps. This method minimizes the risk of group
names overlapping with standard identifiers from JavaScript or the ELO runtime environment. In
principle, however, it can lead to problems if one of the group names is identical to a standard
identifier or one of the translation lists.

H Processes and automation

var NAME;

var ARCDATE;

var DOCDATE;

var O0BJCOLOR;

var OBJDESC;

var OBJTYPE;

var ARCHIVINGMODE;
var ACL;

var EM_PARENT ID;
var EM_PARENT ACL;
var EM_SEARCHNAME;
var EM_SEARCHVALUE;
var EM_SEARCHCOUNT;
var EM_SEARCHMASK;
var EM_IDATEFROM;
var EM_IDATETO;

var EM_XDATEFROM;
var EM _XDATETO;

var EM FOLDERMASK = "1";

Information

This list may be expanded in the course of project process. In particular, it can be expanded
with additional entries through local customizing.

The number of the metadata form for the current document can be changed using a rule. However,
if this results in an invalid form number or a number that does not exist in the list of alternative
target forms, this will cause a runtime error when saving the document, and not when assigning
the form.

If an error rule is called due to a runtime error, it will delete all already allocated filing targets of
the previously processed rules. If the error rule does not have its own <destination>, the
document remains at its original position. Otherwise, the target of the error rule is used.

Changed metadata is moved and saved at the end, after the last rule is processed. If this leads to
an error, the last error rule is called, and not the error rule that belongs to the rule defining the
target (which is, indeed, identical to what occurs when there is only a single error rule).

Sample structure

The following provides a sample definition, along with a list of the code generated from it. This
information is for orientation purposes only.

ruleset

base

Processes and automation

<name>Thiele e-mail form</name>

<search>
<name>"ELOOUTL2"</name>
<value>"Thiele*"</value>
<mask>2</mask>
<max>2</max>
<idate>

<from>"-35"</from>

<to>"+1"</to>
</idate>
</search>
<masks>
<mask>12</mask>
<mask>13</mask>
<mask>20</mask>
</masks>
<interval>1M</interval>
</base>
<rule>

<name>Rule 1l</name>

<destination mask="5">"qThieleYE-mailsy" + ELOOUTL1l</destination>

<mask>20</mask>
<index>
<name>ADDENTRY</name>

<value>getObjShort(2)</value>

</index>
<index>
<name>ELOOUTL2</name>

<value>"!!" + ELOOUTL2</value>
</index>
<index>
<name>DOCDATE</name>
<value>"20070930"</value>
</index>
<index>
<name>ARCHIVINGMODE</name>
<value>2</value>
</index>
<index>
<name>ACL</name>
<value>"PARENT"</value>
</index>

</rule>

IIHiII

Processes and automation

rule

name>Journal copy</name

destination mask="1">"qThielefJournalsY" + ELOOUTL1</destination

rule

rule
name>Script rule</name
script

moveTo(Sord, "YRepositoryfTargetslq" + ELOOUTL1);
moveTo(Sord, "YRepositoryfTargets29" + ELOOUTL2);
moveTo(Sord, "YRepositoryfTargets39" + ELOOUTL3);

script

rule

rule
name>Global Error Rule</name
condition>0nError</condition

destination>"9ThieleYError"</destination

index
name>ELOOUTL2</name
value>"!1" + ELOOUTL2</value
index
index

name>ARCHIVINGMODE</name
value>0</value
index
rule

ruleset

E Processes and automation

Programming

Programming with ELO Automation Services

The chapter titled "Programming with ELO Automation Services" (ELOas) describes how to set up
and use the JavaScript Runtime Environment. This module enables you to run additional functions
in ELOas that are not available in the basic version.

Script execution

The XML configuration of the ruleset is not only interpreted by ELOas. It is also translated when
imported to a JavaScript program and combined with the basic routines that are also available in
JavaScript. This script will then be run later. This has various advantages:

The assignments in the XML configuration can contain the whole range of JavaScript expressions
with any kind of function calls.

Any kind of JavaScript code sections with complex routines can be embedded in the XML
configuration.

The basic routines can be extended with all types of functions. These can then also be used by
administrators without programming knowledge, by simply calling the function within an
expression. Take the DB Access and Document Export modules for example.

The extended basic routines can also use any external Java libraries to increase the range of
functions (such as JDBC drivers, or even the IX client to directly control the ELO Indexserver).

E Processes and automation

- EB ELOasBase

Direct

Java

o EEI JavaScript
1 aclu: ACL Utilities
187 addr: AddRights
@ bt: Base Templates
@ cal: Calendar Utilities
@ cnt: ELO Counter Access
@ db: DB Access
@ dex: Document Export
@ docx: DocExtractor Utilities
18 elo: ELO Utils

18 exif: Read File Info

Fig.: JavaScript' directory

The major advantage of the basic functions in JavaScript is that these functions can be customized
or (preferably) added to within the project, without requiring ELOas itself to be changed. Thus, you
can work with a standard program, but adapt it to your requirements.

The basic installed version of ELOas includes the necessary basic functions to execute searches
and process rules (base templates, imports, and ELO utilities). This part should normally remain
unchanged. Only in special cases does it make sense to make changes here. Furthermore, it has
two modules for database access (DB Access) and exporting document files (Document Export). In
future versions, additional modules will be available. We also plan to set up a kind of online
exchange in the SupportWeb for ELOas modules for business partners.

In order to run such modules without any conflicts, a namespace concept has been developed,
which assigns each module its own namespace. Namespaces must always be written in lowercase,
as this could otherwise lead to conflicts with group names from the form definitions. All 2- and 3-
digit namespace names are reserved for ELO and are used for standard modules and released add-
ons. For custom modules, partners can use namespace names of four or more digits. If you create
a module that you only want to implement in one project, you can also use a one-digit name. The
module name in ELO must start with the namespace name, followed by a colon and a short
description (e.g. dex: Document Export). Internally, the namespace is implemented in a way that a
JavaScript object is created with the name of the namespace, and then all required functions of the

n Processes and automation

module are assigned to this object. As this is ultimately a list, the individual functions are
separated with a comma instead of a semicolon.

var dex = new Object
dex =

commandl: function(x,y

command2: function

These functions can then be addressed by the JavaScript code with dex.commandl(x,y) or with
dex.command2(). As every module has its own unique identifier, these can be combined without the
possibility of naming conflicts.

The Imports module has a special position among the basic modules. It is always placed at the
very start of the chain in the JavaScript program. This is therefore where the required Java library
imports should be placed. You can also configure global variables that are of general interest here.
As this module is a global module, it does not have a namespace.

Creating custom modules

New custom modules can be created by the administrator by simply creating a new folder with the
name of the module within the ELOas\/avaScript folder. The actual JavaScript code is entered to the
folder's Extra text tab. Using permission controls in ELO, individual modules can be also enabled
and disabled by setting an ACL, which controls access for the ELOas account.

In each case, newly created or released modules only become active once the service has been
restarted or refreshed.

H Processes and automation

© @ localhost:9060/ELOas/?cmd=status e ©@ | Q Suchen o X
£ Meistbesucht @ Erste Schritte

ELO Automation Services status report, Version
20.00.000 Build 005

No active ruleset, pausing

Excecuted Name Next run Run | Action |Status
0 DatevExportRule Trigger Stop | Reload
\ 2 FesteWerteKachel 2020-01-21 09:37:10.843 Stop | Reload |Idle...
2 Freie Eingabe 2020-01-21 09:37:10.843 Stop | Reload |Idle...
1 NotifyWf 2020-01-21 09:45:10.102 Stop | Reload |Idle...
2 PLANDATEN_AUTO_VS 2020-01-21 09:37:10.843 Stop | Reload |Idle...
’ 2 RegExpExample 2020-01-21 09:37:10.843 Stop | Reload |Idle...
I 2 SendMail 2020-01-21 09:37:10.843 Stop | Reload |Idle...
2 TestIsoDate 2020-01-21 09:37:10.843 Stop | Reload |Idle...
0 TestSaveTiffAsPdf Trigger Stop | Reload
2 TileExample 2020-01-21 09:37:10.843 Stop | Reload |Idle...
Direct Pool 1/2
0 CreateStdAsLibs Trigger Direct| Reload
0 CreateStdAsLibsEN Trigger Direct| Reload
0 TestActivateAsposeLicense Trigger Direct| Reload
0 TestAsString Trigger Direct| Reload
0 TestCallSignature Trigger Direct| Reload
0 TestCanChangePermissions Trigger Direct| Reload
0 TestConvertEmIToPdf Trigger Direct| Reload

Fig.: ELOas status page

Custom modules can contain any number of functions or global variables. As all modules must be
executed together within a JavaScript context, however, it is important to watch out for possible
namespace conflicts when naming them. Unfortunately, such conflicts will not be seen as errors by
the JavaScript interpreter and can therefore not be recognized automatically.

The objects of the custom module have an unlimited lifetime. After they are created, they remain
active until the service is ended or refreshed. This can be very problematic in some cases, such as

H Processes and automation

with database connections. If a persistent connection is created at program start or first run and
then remains active for an unlimited time, this can lead to limited resources becoming reserved for
unnecessarily long times (such as when the ruleset only becomes active once a month). Or, even
worse, the resource could become invalid (e.g. due to a database server restart). Recognizing an
invalid service condition and initiating an automatic reconnect requires significant processor
resources. This problem can be significantly moderated by only connecting such resources as
needed, and by automatically releasing them at the end of the ruleset (see also the following
chapter section Lazy initialization). To do this, every module must implement a function with a
special name: <namespace>ExitRuleset (e.g. dexExitRuleset). After a ruleset has finished
processing, this special function is invoked for each module. The script calls for deactivating the
connection can be configured in this function.

Lazy initialization

If all external resources must immediately be connected and then disconnected at the end every
time a ruleset is run, this can lead to significant unnecessary resource use. If a ruleset needs to
react quickly and thus run once a minute, in many cases not a single active data set will be
available for processing. Thus, unnecessary connections will frequently be created and then
disconnected. For this reason, external resources should always be connected via "Lazy
initialization". In this case, the connection will not be created at the same time as the search, but
only once it will actually be used.

This formula is relatively easy to implement in practice. Let's use "Reader" as an example, and we
want to use a resource that has the methods Open(), Read(), and Close(). The Open() should only
be run upon the first Read(), and the Close() only when an Open() has also been performed. The
ruleset reads a user name from this resource using readUser. The JavaScript code in Reader could
then look like this:

var readerInitialized = false

var reader = new Object

reader =

function readUser
If (!'readerInitialized
Open

readerInitialized = true

return Read

function readerExitRuleset
if (readerInitialized

Close

E Processes and automation

Using the readerInitialized global variable, the module will recognize whether a connection has
been opened using Open(). This is set to false when the program starts, and no contact exists yet.

If a rule from the ruleset then wants to identify the user name, the readUser() function is invoked.
There it will first check whether a connection already exists. If not, a connection is opened with
Open() and readerInitialized set to true. Then, for subsequent calls, no additional Open() will be
executed. Only afterwards will Read () be used on the resource.

Once the ruleset is completed, the end function readerExitRuleset will be called for the Reader
module. This will check whether an open connection still exists, and then close it with Close() if
required.

n Processes and automation

ELOas JavaDoc

ELOas 21 provides a number of utility classes/functions for completing frequent tasks. The JavaDoc
for the internal ELOas interface is available at http://www.forum.elo.com/javadoc/as/21/. In
addition, the current ELO master contains a collection of example rules for calling functions from
the ELOas interface.

ELO PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

Digital Offce

SEARCH: [2 x|

Package Description
de.elo.mover.main
de.elo.mover.main.aspose
de.elo.mover.main.barcode
de.elo.mover.main.helper
de.elo.mover.main.ldap
de.elo.mover.main.mail
de.elo.mover.main.mail.rtf
de.elo.mover.main.pdf
de.elo.mover.main.poi
de.elo.mover.main.tiff
de.elo.mover.main.tiles
de.elo.mover.main.tiles.analyzer
de.elo.mover.main.tiles.date
de.elo.mover.main.tiles.groups
de.elo.mover.main.tiles.ix
de.elo.mover.utils

de.elo.utils.io

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP v

Fig.: Overview

http://www.forum.elo.com/javadoc/as/21/
http://www.forum.elo.com/javadoc/as/21/

Processes and automation

Debugging

Starting with version 7.00.024, a debugger is also available for ELOas. The debug engine built into
the Rhino Engine is used. It can be activated using a configuration parameter.

<entry key="debug">true</entry>

ELO Automation Services Debugge

P Run

Available rules in profile "ELO12": @
AutomatischVerschieben
ExtractCSV
Neuer Ruleset #0xffc der nicht mehr
nigel
sol.common.as.SendMail
sol.common.as.WfController
sol.common_fx.UpdateExchangeRates
sol.invoice.InvoiceXmlImporter
é’ BarcodeRecognition
(P BLP Test
(A BLP Wait Test
(P MYRULE

ﬂ, sol.common.as.OfficeConverter

M Stop Profile: | ELO12 -

{§} Config

© Overview

&, sol.common.as.SendMail

A sol.common.CreateSignedPdf

Process status:

File Edit Debug Window ELO (P)[~llv]
| Break | Step Into | Step Over | Step Out 501520
§ 3
[sol.common.as.SendMail oo X
1 //Import the IndexServer API classes. -
2 importPackage (Packages.de.elo.ix.client); D
3 importPackage (Packages.de.elo.mover.main);
4 importPackage (Packages.de.elo.mover.main.pdf) ;
S importPackage (Packages.de.elo.mover.main. tiff) ;
6 importPackage (Packages.de.glol mover.main.utils);
7 importPackage (Packages.de.elo.mover.utils);
3 importPackage (Packages. java.lang) ;
° importPackage (Packages.java.sql) ;
10 importPackage (Packages.java.io);
11 importPackage (Packages.org. apache. commons. io) ;
12 importPackage (Packages. javax.mail) ;
13 importPackage (Packages. javax.mail.internet);
14 importPackage (Packages. java.util) ;
15 importPackage (Packages. org. apache. commons. lang) ;
16 importPackage (Packages.org. apache. commons.httpclient) ;
17 importPackage (Packages.orqg. apache. commons.httpclient.methods) ;
16 importPackage (Packages.org.json);
19 -
il] »
Context: [I'| Expression] Value
Name Value
this Locals Watch Evaluate
Thread:
Close

elo120 // Administration // Business Solutions // common // ELOas Base // Direct // sol.common.as.SendMail

Fig.: ELO Automation Services Debugger

To operate the debugger, ELOas should be run locally from the developer's computer. In addition, it
should be started as a console process and not as a Windows service. Otherwise, the debugger will

not work on Windows Vista or Windows 7.

If you have multiple active rulesets in use, a separate debugger window opens for each. With the
Window menu entry, you can switch between these individual windows.

In the debugger, you can set breakpoints for individual functions and inspect or change variable
contents. You can then resume execution in individual steps or run mode.

Processes and automation

Kompatibilitat Digitale Signaturen
Sicherheit l Details I Vorgangerversionen

Objektname: C:\ELOenterprise 10\servers\ELO-PCVLADOV-3\bin\ELO-F

Gruppen- oder Benutzemamen:
52 SYSTEM
3?, Administratoren (PCVLADOV\Administratoren)
82 Benutzer (PCVLADOV\Benutzer)

Klicken Sie auf "Bearbeiten”, um die Berechtigungen zu
andem.

Berechtigungen fur "Authentifiziete Benutzer”
Zulassen Verweigem

Vollzugriff

Andem

Lesen, Ausfihren

Lesen

Schreiben

Spezielle Berechtigungen

Klicken Sie auf "Erweitert”, um spezielle

Berechtigungen anzuzeigen. Erweitert

Weitere Informationen uber Zugriffssteuerung und Berechtigungen

OK] [Abbrechen] ’ Ubemehmen ‘

Fig.: Apache Tomcat properties
Syntax errors in the script
If the script contains a syntax error, JavaScript processing will not be able to start. The advantage

of this kind of error is that you will them right when you start the program, shown in the ELOas
status dialog box.

37

Processes and automation

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe |

© Overview (Java Platform SE8) X IXServicePortlF (ELO IndexServer D¢ X & Projects - Dashboard - GitLab

. @ %

X ELO Automation Services 20.00 X

@ =

© @ localhost:9060/ELOas/?cmd=status

| ¥ Meistbesucht @ Erste Schritte

| ELO Automation Services status report, Version

20.00.000 Build 005
No active ruleset, pausing
Excecuted Name Next run Run Action Status i
0 DatevExportRule Trigger Stop Reload i
10 FesteWerteKachel 2020-01-21 09:45:11.877 Stop Reload Idle...
10 Freie Eingabe 2020-01-21 09:45:11.877 Stop Reload Idle...
il NotifyWf 2020-01-21 09:45:10.102 Stop Reload Idle...
10 PLANDATEN_AUTO_VS 2020-01-21 09:45:11.877 Stop Reload Idle... i
10 RegExpExample 2020-01-21 09:45:11.877 Stop Reload Idle...
0 SendMail not scheduled yet. Stop Reload Configuration Error
log.info ("Exception caught: " + EM ERROR);
sys.processRule2 (Soxd) ;
_ return;
processRulel: function (Sord) {
// Rule: SendReminder

mail.setSmtpHost ("MyMailServer");

var
var
var

withGroups = true;
withDeputies = true;
withIndex = true;

var userld =;
var replyTo = "m.vladov@elo.com";
var subject = "Testmail";

notify.processUserItems (userId, replyTo, subject, withGroups, withDeputies, withIndex):;

org.mozilla.javascript.EvaluatorException: syntax error (SendMail#225)

Fig.: Syntax errors in the script

The complete generated JavaScript program with all embedded modules is logged in the ELOas
report on start-up to facilitate debugging. The error number listed refers to this section of the
report (starting with the section "//Import the IndexServer API classes").

14:28:07,681 DEBUG (WorkingSet.java:368) - load JavaScript Templates,

Parent GUID=(23594D10-4704-4FF9-938B-136792051D67)
14:28:07,744 DEBUG (WorkingSet.java:385) - Script file found: Base Templates
14:28:07,744 DEBUG (WorkingSet.java:385) - Script file found: Imports
14:28:07,744 DEBUG (WorkingSet.java:385) - Script file found: ELO Utils

H Processes and automation

14:28:07,759 DEBUG (WorkingSet.java:385) - Script file found: DB Access
14:28:07,759 DEBUG (WorkingSet.java:385) - Script file found: Document Export
14:28:07,759 DEBUG (WorkingSet.java:385) - Script file found: Dummy Modul mit
Namenskonflikt

14:28:07,759 DEBUG (WorkingSet.java:276) - loadItems,

Parent GUID=(9DAC7E8D-1467-4820-B53B-D27CCB5F06CO)
14:28:07,822 DEBUG (WorkingSet.java:286) - Number of Child entries: 1
14:28:07,822 DEBUG (WorkingSet.java:304) - Ruleset: MailRulel
14:28:08,025 DEBUG (WorkingSet.java:472) -
//Import the IndexServer API classes.

importPackage(Packages.de.elo.ix.client);
importPackage (Packages.java.lang);
importPackage (Packages.java.sql);
importPackage (Packages.sun. jdbc.odbc);
importPackage(Packages.java.io);

var NAME;

var ARCDATE;

var DOCDATE;

var OBJCOLOR;

var OBJDESC;

var OBJTYPE;

var ARCHIVINGMODE;
var ACL;

var EM_PARENT ID;
var EM_PARENT ACL;

var EM NEW DESTINATION = new Array();
var EM FIND RESULT = null;

Please note that this output will be repeated every restart and reload. Thus, a report file can
contain multiple lists. The last list in the report is always the most current.

Logical or runtime errors

Runtime errors are somewhat more difficult to diagnose. The only option is to isolate the location
of the error using log outputs. Such a log output is unfortunately much less transparent than an
interactive debugger, but it also has significant advantages in batch processing. In ELOas, the Java
logger is available on the JavaScript page under the name log. For this reason, the JavaScript code
can also make entries there with log.debug().

var cmd = "SELECT * FROM objekte where objid = 22"
var res = getLine(1l, cmd

log.debug(res.objshort

log.debug(res.objidate

Processes and automation

log.debug(res.objguid

The log outputs of the JavaScript code can be recognized by the lack of class name and missing
line number in the report (7:7).

15:
15:
15:
15:
15:
15:
15:
15:
15:

38:
38:
38:
38:
38:
38:
38:
38:
38:

57,643
57,659
57,659
57,659
57,659
57,659
57,659
57,659
57,659

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

(?:
(?:
(?:
(?:
(?:
(?:
(?:
(?:

(?:

)
)
?7)
7)
?7)
?)
?)
?)

?)

Now init JDBC driver
Get Connection

Init done.
createStatement
executeQuery

read result

getLine done.

Suchen geandert.
56666880

n Processes and automation

Standard modules

This document provides a detailed description of the following standard modules:

e cnt: ELO Counter Access
» db: DB Access

» dex: Document Export

* ix: Indexserver functions
» wf: Workflow Utils

* mail: Mail Utils

* fu: File Utils

* run: Runtime Utilities.

The standard modules elo, tfer, addr, notify, exif, and www are described in the JavaDoc for the
internal ELOas interface available at http://www.forum.elo.com/javadoc/as/21/.

cnt: ELO Counter Access
The standard module cnt enables access to ELOam counter variables.
cnt: Available functions

Create counter: The createCounter() function creates a new counter with a start value that can be
preset. If the counter already exists, it is reset.

createCounter: function (counterName, initialValue
var counterInfo = new CounterInfo
counterInfo.setName(counterName

counterInfo.setValue(initialValue

var info = new Array(1

info[0] = counterInfo

ixConnect.ix checkinCounters(info, LockC.NO

Get counter value: The getCounterValue() function gets the current value of the specified counter.
If the autoIncrement parameter is set to true, the counter value is automatically incremented as
well.

getCounterValue: function (counterName, autoIncrement
var counterNames = new Array(1l

counterNames [0 counterName

var counterInfo ixConnect.ix checkoutCounters(counterNames

autoIncrement

http://www.forum.elo.com/javadoc/as/21/
http://www.forum.elo.com/javadoc/as/21/

u Processes and automation

LockC.NO

return counterInfo[0].getValue

Create tracking number from counter: You can use the getTrackId() function when you need a
serial, automatically recognizable number. It reads the next counter value and codes a number
with a prefix and a check digit. The generated string looks like this: <prefix><sequential
number>C<check digit> ("ELO1234C0")

getTrackId: function (counterName, prefix

var tid = cnt.getCounterValue(counterName, true

return cnt.calcTrackId(tid, prefix

Create tracking number: You can use the calcTrackId() function when you need a serial,
automatically recognizable number. It codes a number with a prefix and a check digit. The
generated string looks like this: <prefix><sequential number>C<check digit> ("ELO1234CO0")

calcTrackId: function (trackId, prefix

var chk = 0
var tmp = trackId

while (tmp > 0
chk = chk + (tmp % 10
tmp = Math.floor(tmp / 10

return prefix + "" + trackId + "C" + (chk %10

Search for tracking number in text: The findTrackId() function searches a text for a tracking
number. The expected prefix and the length of the actual number can be controlled with a
parameter. If the number has a variable length, the length parameter can be set to 0. If no
appropriate result is found in the text, -1 is returned. Otherwise, the number value (and not the
complete track ID) is returned.

findTrackId: function (text, prefix, length

text = " " + text + " "

var pattern = "\\s" + prefix + "\\d+C\\d\\s"

ﬂ Processes and automation

if (length > 0
pattern = "\\s" + prefix + "\\d{" +
length + "}C\\d\\s"

var val = text.match(new RegExp(pattern g
if (lval

return -1

for (var i = 0; 1 < val.length; i++
var found = valli
var number = found.substr(prefix.length + 1
found.length - prefix.length - 4
var checksum = found.substr(found.length - 2, 1
if (checkId(number, checksum

return number

return -1

db:DB Access

The DB Access standard module provides simple access to external databases. ODBC databases,
as well as Microsoft SQL and Oracle SQL, are supported in the standard module. If other databases
need to be accessed with a native JDBC driver, the corresponding JAR files must be copied to the
LIB directory of the service, and the imports and access parameters saved to the Imports module.
The order of database definitions in the imports module will then determine the value of the
Connection number parameter in the following calls.

db: Available functions

getColumn(connection number, SQL query

This call must be provided as a parameter for an SQL query, which requests a column and returns
only one row as result.

For example:

"select USERNAME from CUSTOMERS where USERID = 12345"

H Processes and automation

The connection number will determine which database connection is used. The list of available
connections is defined in the imports module.

Example with JavaScript code:

var cmd = "select USERNAME from CUSTOMERS where USERID = 12345"
var res = getColumn(1l, cmd
log.debug(res

Example in the GUI Designer:

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

© Overview (Java Platform S X IXServicePortIF (ELO IndexServ X & Projects - Dashboard - GitLab X ER ELO Automation Services X

ui/automation/index.xhtm b w Q Suchen o X @‘ =

© @ localhost:9090/AdminConsole

$¥ Meistbesucht @ Erste Schritte

v Rules

Lookup User Name + + X ©
Wizard Script

|~ ~ |

Name Lookup User Name

Condition

v
Filing path
o 1
Target form v
Index fields ©
o NAME v getCqumn(1,"seledUSERNAMEYromUSER‘ X
Global Error Rule + + X O
Wizard Script
Name Global Error Rule
i Condition OnError >
Filing path
‘ =
r Target form ~
Index fields ©

Fig.: GUI Designer

If the results list comprises multiple rows, only the first value is returned. All others are ighored
without returning an error message.

getLine(connection number, SQL query

This request returns a JavaScript object as the result with the values of the first row of the SQL
query. The query can contain any number of columns, including an *. The column names, however,
must be unique and valid JavaScript identifiers. Please note that the JavaScript identifiers are case
sensitive.

n Processes and automation

For example:

"select USERNAME, STREET, CITY from CUSTOMERS where USERID = 12345"

The connection number will determine which database connection is used. The list of available
connections is defined in the imports module.

Example with JavaScript code:

var cmd =
"SELECT objshort, objidate, objguid FROM [elo20].[dbo].objekte where objid = 22"
var res = getlLine(1l, cmd
log.debug(res.objshort
log.debug(res.objidate
log.debug(res.objguid

If the results list contains multiple rows, only the values of the first row are returned. All other rows
are ignored without returning an error message.

getMultiline(connection number, SQL command, maximum number of rows

This command works in a similar way to the getLine request. However, it returns an array of
objects instead of a single object. Each row in the results list creates an entry in the array. To
prevent buffer overflows in case of large databases and poorly formed queries, you can limit the
maximum number of rows. Additional results are simply ignored.

Example:
var obj = db.getMultiLine(1l, "select objshort, objid from [elo80].[dbo].objekte where objid < 10
for (var 1g = 0; 1lg < obj.length; lg++

log.debug(obj[lg].objid + " : " + obj[lg].objshort

doUpdate(connection number, SQL command
The getLine or getColumn calls cannot be "abused" to make changes to the database. This
command uses the internal JDBC command executeQuery, which only permits SELECT queries.

In order to change an entry, the doUpdate call can be used. This transfers the entered SQL
command to the JDBC command executeUpdate, which can be used to change existing entries or
insert new entries.

I Information

ﬂ Processes and automation

As all parameters have to be transferred in text format, be careful to correctly code any
quotation marks that may occur. Otherwise, error messages will occur, and in the worst
case scenario, this could even lead to an SQL injection attack on the SQL server.

Imports

The type and scope of required imports depend on the database and can be found in the
manufacturer's documentation. The JAR files in use may need to be copied to the LIB directory of
the ELOas service.

The following shows an example of the necessary imports for the JDBC-ODBC bridge:

importPackage(Packages.sun. jdbc.odbc);

A standard system selector was introduced to the Imports module of the standard ELOas 12
libraries. For performance reasons, the standard system selector has the standard value
SordC.mbLean and is used when processing available ELOas rules.

const EM SYS STDSEL = SordC.mbLean;

A system selector named EM SYS SELECTOR was also introduced to the Imports module. The system
selector is set to the value of the set standard system selector in the bt module. In the onStart
event of the ELOas rules, the system selector can use/process additional properties of an entry,
besides the ID and name.

EM_SYS_ SELECTOR=SordC.mbAll;

At the same time, a workflow selector named EM_WF_SELECTOR was added to the workflow
constants:

var EM WF SELECTOR = SordC.mbLean;

Connection parameters

The database connection parameters must be saved in the Imports module. There you can find a
list of connections that can be later addressed using their number (starting with 0) as connection
number.

var EM_connections =

driver: 'sun.jdbc.odbc.JdbcOdbcDriver!
url: 'jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=C:\\Temp\\EMDemo.mdb"

user:

n Processes and automation

password: ''

initdone: false
classloaded: false
dbcn: null

driver: 'com.microsoft.sqlserver.jdbc.SQLServerDriver'
url: 'jdbc:sqlserver://srvt02:1433"

user: 'elodb'

password: 'elodb'

initdone: false

classloaded: false

dbcn: null

The following information must be entered for each connection:

JDBC class name for the database connection. You can get this information from the

driver . . .
JDBC driver provider or from the database provider.
Access URL to the database. Database-dependent connection parameters are

url configured here, such as file paths for Access databases, or server names and ports
for SQL databases. These connection parameters are manufacturer-dependent and
can be found in the corresponding documentation.

User Login name for database access. This parameter is not used by all databases (e.g. not

by unprotected Access databases). In such cases, the parameter can remain empty.
password Database password.
initdone Internal variable for "lazy initialization".
classloaded Internal variable to check whether the class file has already been loaded.

dbcn Internal variable to save the database connection object.
JavaScript code

The dbInit routine is only called within the module. It is performed before each database access,
and checks whether a connection has been established, establishing one if necessary.

function dbInit(connectId
if (EM_connections|connectId].initdone == true

return

log.debug("Now init JDBC driver"
var driverName = EM connections[connectId].driver

var dbUrl = EM connections|connectId].url

IIIiII

Processes and automation

var dbUser = EM connections[connectId].user

var dbPassword = EM connections|connectId].password

try

if (!'EM connections[connectId].classloaded

Class.forName(driverName) .newInstance

log.debug("Register driver ODBC"
DriverManager.registerDriver(new JdbcOdbcDriver

EM_connections[connectId].classloaded = true

log.debug("Get Connection"

EM connections|connectId].dbcn = DriverManager.getConnection
dburl
dbUser
dbPassword

log.debug("Init done."
catch (e

log.debug("ODBC Exception: " + e

EM connections|[connectId].initdone = true

The exitRuleset DB Access() function is called automatically once the ruleset is finished
processing. It checks whether a connection exists, then closes it. This check must take place for all
configured databases.

function exitRuleset DB Access
log.debug("dbExit"

for (i = @; i < EM connections.length; i++

if (EM_connections[i].initdone
if (EM_connections[i].dbcn
try
EM connections[i].dbcn.close
EM connections[i].initdone = false
log.debug("Connection closed: " + i
catch (e

log.info("Error closing database " + i + ": " + e

Processes and automation

}

The function getLine() reads a line from the database with any number of columns, then packs the
results into a JavaScript object. This object then receives a member variable with the column name
for each column.

function getlLine(connection, qry) {

// Sub-function: creates a JavaScript object with

// the imported database contents

function dbResult(connection, qry) {

// First establish the connection

dbInit(connection)

// Now create a SQL statement object

var p = EM connections|[connection].dbcn.createStatement()

// And execute the query
var rss = p.executeQuery(qry)

// rss contains the list of results. Now the first

// row is read

if (rss.next()) {
// The number of columns is identified via the metadata
var metaData = rss.getMetaData()
var cnt = metaData.getColumnCount()

// A member variable is created for each column
// It has the SQL column name as the name and
// imported database contents as the variable.
// Additionally, the first column can always be addressed
// under the name 'first'.
for (i = 1; i <= cnt; i++) {
var name = metaData.getColumnName(1i)
var value = rss.getString(i)

this[name] = value
if (i ==1) {

this.first = value
}

// Finally, the list of results and the SQL

n Processes and automation

// statement are closed.

rss.close

p.close

// the actual function's start is here. A
// JavaScript object with the database contents
// 1is requested.

var res = new dbResult(connection, qry

return res

// The getColumn function is a special variant
// of the getLine call. The SQL query can only
// show one column as a result. If there are more
// columns, these will be ignored, along with
// additional rows.
function getColumn(connection, qry
var res = getlLine(connection, qry

return res.first

dex: Document Export

The Document Export module can automatically export documents from the repository to the file
system. This export is not a one-time process - if a new document version is created, the module
automatically writes an updated file. Further, published files can be deleted. For security reasons,
the files can only be placed in a preconfigured path.

To use this module, a metadata form must be defined that contains the document status and one
or more filing targets in the file system. In addition, the document number of the most recent
export will be saved in the form.

Processes and automation

=
Verschlagwortung li_hj
Maskenauswahl « Basis Zusatztext Optionen Berechtigungen Anderungschronik Weitere Infos
Filtern
Kurzbezeichnung | ELO-Telefonliste 2020 v
c Tectmack 15015947
ELOas Testmask 15015947 Datum 02.10.2015,09:16 Aktuelle Version 3
ELOas Testmask 15227637
Ablagedatum 07.08.2018,11:24 Bearbeiter Administrator
ELOas Testmask 1522764C r
Status Aktiv: Freigegeben =
ELOas Testmask 15227643
Dateipfad 1 Stichworter
ELOas Testmask 15227648 o
Dateipfad 2 Filtern nach: Aktiv: Ereicegeben
ELOas Testmask 15227653 iltern nach: Aktiv: Freigegeben
Letzter Export ELOSTDSWL

ELOas Testmask 15228305

Aktiv: Freigegeben

ELOas Testmask 15393274 Aktiv: Zur Loschungvorgesehen
In Vorbereitung

ELOasMask Intern

EMail Nicht mehr aktiv / Geloscht

(7] “ Abbrechen

Fig.: Status field in the metadata form

The status field determines the actions to be performed. Active: Released registers the file for
export. Active: Set for deletion deletes the file in the file system and sets the status to No longer
active/deleted. All other status settings do not trigger an ELOas action and are intended for
internal documents or documents that have not yet been released. As this status value is queried
for internal processing, it is a good idea to only enter values to this line from a preconfigured
keyword list.

The fields File path 1..5 contain the path and file name of the document in the file system. Note
that this is a relative path, where the starting path is preset as a fixed value called dexRoot in the
JavaScript module and can be changed there. This fixed value is designed for security purposes, as
otherwise user error could lead to files being overwritten.

The Last export field contains the document number of the most recently exported file version. If a
file is edited, creating a new version, the module recognizes this and writes a new copy to the file
system. This field is then refreshed.

If an error occurs during processing, the error rule enters the text "ERROR" to the Last export field.
This allows you to create a dynamic index in ELO, which then checks this field for the value ERROR
and thus always shows a current list of all documents that cannot be exported.

Example for a dynamic index when the form has an ID of 22:

'+ , objkeys where objmask = 22 and objid = parentid and okeyname ='PDEXPORT
and okeydata ='ERROR'

H Processes and automation

dex: Available functions

This module only provides one function: processDoc. It is assigned the ELO Indexserver SORD
object as a parameter and, based on the status, checks whether the file should be exported or
deleted, then performs the corresponding action. The new document ID is then transferred as
return value. The current SORD object is available within a rule process in the JavaScript variable
Sord.

Example in the XML ruleset code:

rule
name>Rule 1</name
condition>(PDEXPORT != Sord.getDoc()) && (PDEXPORT != "ERROR") || (PDSTATUS == "Act

index

name>PDEXPORT</name

value>dex.processDoc(Sord)</value
index

rule

dex: JavaScript code

First, the base path docRoot for the document repository is identified. The target path is always
ascertained from this setting and the user input in the metadata form. In principle, it would be
possible to leave the base path empty, allowing the user to enter any path they wish. However,
this approach would present a great security risk, as every user could overwrite any file from the
access area of ELOas.

var dexRoot = "c:\\temp\\"

The processDoc function is called from the rule definition. The status of the ELO Indexserver SORD
object is checked and the required function is called.

ﬂ Processes and automation

function processDoc(Sord
log.debug("Status: " + PDSTATUS + ", Name: " + NAME

if (PDSTATUS == "Active: Set for deletion"
return dex.deleteDoc(Sord
else if (PDSTATUS == "Active: Released"

return dex.exportDoc(Sord

return

If the status was set to "Delete", the deleteDoc function initiates the deletion of the files and
changes the status to "Deleted".

function deleteDoc(Sord
dex.deleteFile(PDPATH1
dex.deleteFile(PDPATH2
dex.deleteFile (PDPATH3
dex.deleteFile (PDPATH4
dex.deleteFile (PDPATH5

PDSTATUS = "No longer active / deleted"
return Sord.getDoc

The deleteFile function performs the actual deletion. It first checks whether a file name is
configured and whether the file exists, and then removes it from the file system.

function deleteFile(destPath
if (destPath == ""

return

var file = new File(docRoot + destPath
if (file.exists

log.debug("Delete expired version: " + docRoot + destPath

file["delete"

The internal exportDoc function is called to write new file versions. The file is retrieved by the
document manager and copied to the target folder.

E Processes and automation

function exportDoc(Sord

var editInfo = ixConnect
ix
checkoutDoc(Sord.getId null, EditInfoC.mbSordDoc, LockC.NO
var url = editInfo.document.docs[0].getUrl
dex.copyFile(url, PDPATH1
dex.copyFile(url, PDPATH2
dex.copyFile(url, PDPATH3
dex.copyFile(url, PDPATH4
dex.copyFile(url, PDPATH5

return Sord.getDoc

The copyFile function executes the copying process on the target folder. It first checks whether a
target file name already exists and if an older version exists that has to be deleted. The new
version is then retrieved by the document manager and saved in the target folder.

function copyFile(url, destPath
if (destPath == ""

return

log.debug("Path: " + docRoot + destPath

var file = new File(docRoot + destPath
if (file.exists
log.debug("Delete old version."
file["delete"] (#ELODOC-D50FBC7EA85D4A709D2C12762E1B9F300

ix: IndexServer functions

The ELOix module contains a collection of various ELO Indexserver functions that are required
frequently in scripting. However, most of these are simple wrappers to perform a similar ELO
Indexserver command, and not complex new functions in themselves.

ix: Available functions

Delete a Sord entry : The object IDs of the SORD entry to be deleted and its parent entry must be
passed as parameters to the deleteSord() function.

ﬂ Processes and automation

lookupIndex: function (archivePath

log.info("Lookup Index: " + archivePath
var editInfo = ixConnect.ix checkoutSord("ARCPATH: " + archivePath
EditInfoC.mbOnlyId, LockC.NO
if (editInfo
return editInfo.getSord getId
else

return 0

Search for an entry : The lookupIndex() function identifies the object ID of an entry found via the
filing path. The archivePath parameter must start with a separator.

lookupIndex: function (archivePath

log.info("Lookup Index: " + archivePath

var editInfo = ixConnect.ix checkoutSord ("ARCPATH:" + archivePath, EditInfoC.mbOnlyId, Loc
if (editInfo

return editInfo.getSord getId

else

return 0

Search for an entry: The lookupIndexByLine() function identifies the object ID of an entry based on
a metadata field search. If the Mask ID parameter is transferred with an empty string, all metadata
forms are searched. The group name and the search term must be provided.

lookupIndexByLine : function(maskId, groupName, value
var findInfo = new FindInfo
var findByIndex = new FindByIndex
if (maskId !'= ""
findByIndex.maskId = maskId

var objKey = new ObjKey
var keyData = new Array(1l
keyData[0] = value
objKey.setName (groupName
objKey.setData(keyData

ﬂ Processes and automation

var objKeys = new Array(1l);

objKeys[0] = objKey;

findByIndex.setObjKeys (objKeys) ;
findInfo.setFindByIndex(findByIndex) ;

var findResult = ixConnect.ix().findFirstSords(findInfo, 1, SordC.mbMin) ;
ixConnect.ix().findClose(findResult.getSearchId());

if (findResult.sords.length == 0) {

return 0;

return findResult.sords[0].id;
o

Read the full text information: The getFulltext() function returns the current full text information
for a document. The full text data is returned as a string.

Please note

It is not possible to tell whether no full text exists, whether full text processing has been
completed, or if it was canceled with errors. The text that exists at the time the query is
performed is returned (which may be an empty string if no full text information exists).

getFulltext: function(objId) {
var editInfo = ixConnect.ix().checkoutDoc(objId, null, EditInfoC.mbSordDoc, LockC.NO);
var url = editInfo.document.docs[0].fulltextContent.url

var ext = + editInfo.document.docs[0].fulltextContent.ext

var name = fu.clearSpecialChars(editInfo.sord.name);

var temp = File.createTempFile(name, ext);

log.debug("Temp file: " + temp.getAbsolutePath());

ixConnect.download(url, temp);
var text = FileUtils.readFileToString(temp, "UTF-8");

temp|"delete"] (#ELODOC-D50FBC7EA85D4A709D2C12762E1B9F301) " checks whether the entered folder

js createSubPath: function (startld, destPath, folderMask) {

log.debug("createPath: " + destPath);

ﬂ Processes and automation

try {
var editInfo = ixConnect.ix().checkoutSord("ARCPATH:" + destPath,
EditInfoC.mbOnlyId, LockC.NO);
log.debug("Path found, GUID: " + editInfo.getSord().getGuid() +

" ID: " + editInfo.getSord().getId());

return editInfo.getSord().getId();;
} catch (e) {
log.debug("Path not found, create new: " + destPath +

, use foldermask: " + folderMask);

items = destPath.split("9");
var sordList = new Array(items.length - 1);

for (var i = 1; i < items.length; i++) {
log.debug("Split " + i + " : " + items[i]);
var sord = new Sord();
sord.setMask(folderMask) ;
sord.setName(items[i]);

sordList[i - 1] = sord;

}

log.debug("now checkinSordPath");

var ids = ixConnect.ix().checkinSordPath(startId, sordList,
new SordZ(SordC.mbName | SordC.mbMask));

log.debug("checkin done: id: " + ids[ids.length - 1]);

return ids[ids.length - 1];
}

wf: Workflow Utils

The wf module contains simplified access methods to workflow data. This is divided into two
groups of functions:

Processes and automation

The high level functions changeNodeUser and readActiveWorkflow are to be used for simple access
from a running WORKFLOW process, and work with the currently active workflow. They are easy to
use, but only perform a simple function.

The low level functions readWorkflow, writeWorkflow, unlockWorkflow, and getNodeByName can be
used from any location. If you want to make multiple changes to the same workflow, you can
ensure that the workflow will only be read and written once, and not multiple times for each
operation.

wf: Available functions

Change user name of a person node: The changeNodeUser() : function replaces the user in the
current workflow node named nodeName with a new user - nodeUserName.

As this call reads, changes, and immediately rewrites the entire workflow, this simple call should
only be used when only one node needs to be edited. If multiple changes are necessary, use the
functions described later on to read, edit, and save a workflow.

As this function identifies the workflow ID from the currently active workflow, it can only be called
from the "WORKFLOW" search. When using it in a TREEWALK or a normal search, a random
workflow ID is used.

changeNodeUser: function(nodeName, nodeUserName
var diag = wf.readActiveWorkflow(true
var node = wf.getNodeByName(diag, nodeName
if (node
node.setUserName (nodeUserName
wf.writeWorkflow(diag
else

wf.unlockWorkflow(diag

Copy user name at a node: The copyNodeUser() function works in a similar way to changeNodeUser;
however, it copies the user name from one node to another node.

copyNodeUser: function(sourceNodeName, destinationNodeName
var diag = wf.readActiveWorkflow(true
var sourceNode = wf.getNodeByName(diag, sourceNodeName
var destNode = wf.getNodeByName(diag, destinationNodeName

if (sourceNode && destNode
var user = sourceNode.getUserName
destNode.setUserName (user
wf.writeWorkflow(diag

H Processes and automation

return user
else
wf.unlockWorkflow(diag

return null

Read current workflow: The readActiveWorkflow() function reads the currently active workflow into
a local variable for editing. At the end, it can be rewritten with writeWorkflow, or the lock can be

removed with unlockWorkflow.

readActiveWorkflow: function(withLock
var flowId = EM WF NODE.getFlowId
return wf.readWorkflow(flowId, withLock

Read workflow: The readWorkflow() function reads a workflow into a local variable. It can then be
evaluated and changed. If you want to save the changes, it can be rewritten using writeWorkflow.
If the workflow is locked and can be read but you do not want to save any changes, the lock can be

removed with unlockWorkflow.

readWorkflow: function(workflowId, withLock
log.debug("Read Workflow Diagram, WorkflowId = " + workflowId
return ixConnect.ix checkoutWorkFlow(String(workflowId
WFTypeC.ACTIVE
WFDiagramC.mbAll
withLock) ? LockC.YES : LockC.NO

Rewrite workflow: The writeWorkflow() function writes the workflow from a local variable to the
database. Any write lock set on it is reset automatically.

writeWorkflow: function(wfDiagram
ixConnect.ix().checkinWorkFlow(wfDiagram, WFDiagramC.mbAll, LockC.YES

Reset read lock: unlockWorkflow() function. If a workflow with a write lock has been read but
cannot be changed, the lock can be reset with unlockWorkflow.

unlockWorkflow: function(wfDiagram
ixConnect.ix checkinWorkflow(wfDiagram, WFDiagramC.mbOnlyLock, LockC.YES

E Processes and automation

Search workflow nodes: The getNodeByName () function searches the workflow node for a node
name. The name must be unique, as otherwise the first node found will be returned.

getNodeByName: function(wfDiagram, nodeName
var nodes = wfDiagram.getNodes
for (var i = 0; i < nodes.length; i++
var node = nodes|i
if (node.getName == nodeName

return node

return null

Start workflow from template: The startWorkflow() function starts a new workflow for an ELO object
ID from a workflow template.

startWorkflow: function(templateName, flowName, objectId
return ixConnect.ix startWorkFlow(templateName, flowName, objectId

mail: Mail Utils

This module is intended for sending e-mails. It requires an SMTP host, through which the e-mails
can be sent. This host has to be made known before sending the first e-mail by using the
setSmtpHost function. Messages can then be sent with SendMail or SendMailWithAttachment. The
module consists of two parts: one for sending e-mails and one for reading e-mail mailboxes.

mail: Available functions for reading a mailbox

You can define a ruleset so that a search is performed on a mailbox and not the ELO repository or
ELO task list. A logon routine has to be configured in the module for each type of mailbox. In this
function, the mail server must be contacted, the desired e-mail folder searched through, and the
list of messages read. Afterwards, ELOas continues to process the command normally. A document
is prepared for each e-mail in the folder designated in SEARCHVALUE. Next, the ruleset is executed
(the subject of the e-mail is automatically applied to the short name field). If the entry is not saved
at the end, there will be nothing to find in the repository either. Only saved e-mails are transferred
to the repository.

search
name>"MAILBOX GMAIL"</name
value>"ARCPATH: YELOasYIMAP"</value

mask>2</mask

n Processes and automation

In the ruleset, MAILBOX <connection name> must be defined as the name, and the repository path
or the number of the target folder as the value. A metadata form to be used for new documents
also has to be defined.

The e-mail is then processed in the ruleset script. The mail module offers a few help routines to
simplify this. In the following example, the body of the e-mail message will be copied to the Extra
text tab in the metadata. Sender, recipient, and MaillD will be applied to the corresponding fields of
the e-mail form:

OBJDESC = mail.getBodyText (MAIL MESSAGE
ELOOUTL1 = mail.getSender (MAIL MESSAGE

ELOOUTL2 = mail.getRecipients(MAIL MESSAGE, "q"
ELOOUTL3 = msgId

EM WRITE CHANGED = true

If additional values or information are required, a complete Java e-mail (Mime) message object is
available in the MAIL_MESSAGE variable.

To ensure that processed e-mail messages are not transferred to the repository multiple times, you
should perform a search for the MaillD before you start processing. If the e-mail message is already
in the repository, the variable MAIL ALLOW DELETE is set to true. Otherwise, the e-mail message is
processed. By setting the deletion flag, the e-mail is either removed from the mailbox or marked as
processed during transfer.

var msgId = MAIL MESSAGE.messageID
if (ix.lookupIndexByLine(EM_SEARCHMASK, "ELOOUTL3", msgId) != 0
log.debug("Mail bereits im Repository vorhanden, Ignorieren oder Ldéschen"
MAIL ALLOW DELETE = true
else
OBJDESC = mail.getBodyText (MAIL MESSAGE
ELOOUTL1 = mail.getSender(MAIL MESSAGE
ELOOUTL2 = mail.getRecipients(MAIL MESSAGE, "q"
ELOOUTL3 = msgId
EM WRITE CHANGED = true

This approach only reads an e-mail twice (once for normal processing, and once in the next pass
for deletion), but it has the great advantage of ensuring the e-mail is only deleted from the mailbox
if it definitely exists in the repository.

If you want to use a mailbox for monitoring, the following four functions are required in the
JavaScript library 'mail":

Establish connection, open mailbox folder: nextImap <connection name>

Next message in the list for processing: finalizeImap <connection name>

ﬂ Processes and automation

Mark message as processed or delete: finalizeImap <connection name>

Close connection: closeImap <connection name>

In simple cases, only one of these four functions needs to be implemented: establish connection -
connectImap _<Verbindungsname>. As a complete range of project-specific actions takes place here
(login parameters, searching for target folder), there is no standard implementation. The three
other functions already exist with a standard function in the system. You simply need to implement
them to perform these additional functions.

Connect to IMAP server: connectImap _<connection name>(): This function must establish a
connection with the e-mail server, search for the desired mailbox, and read it. Existing messages
are saved to the variable MAIL MESSAGES. The e-mail store must be saved to the variable

MAIL STORE and the folders that are read out to the variable MAIL INBOX. Both of these values are
required at the end of processing to close the connection. The variable MAIL DELETE ARCHIVED
determines whether messages can be deleted from the mailbox. If set to false, deletion requests
from the ruleset are ignored. This function will not be directly called up via a script, but rather
activated internally in ELOas (in the MAILBOX search, in the example MAILBOX GMAIL).

connectImap GMAIL: function

var props = new Properties

props.setProperty("mail.imap.host", "imap.gmail.com"

props.setProperty("mail.imap.port", "993"

props.setProperty("mail.imap.connectiontimeout", "5000"

props.setProperty("mail.imap.timeout", "5000"

props.setProperty("mail.imap.socketFactory.class"
"javax.net.ssl.SSLSocketFactory"

props.setProperty("mail.imap.socketFactory.fallback", "false"

props.setProperty("mail.store.protocol"”, "imaps"

var session = Session.getDefaultInstance(props

MAIL STORE = session.getStore("imaps"

MAIL STORE.connect("imap.gmail.com", "<<<USERNAME>>>@gmail.com"
"<<<PASSWORT>>>"

var folder = MAIL STORE.getDefaultFolder

MAIL INBOX = folder.getFolder("INBOX"

MAIL INBOX.open(Folder.READ WRITE

MAIL MESSAGES = MAIL INBOX.getMessages

MAIL POINTER = 0

MAIL DELETE ARCHIVED = false

Close connection: The closeImap <Verbindungsname> function is optional and closes the current
connection to the IMAP server. If no special tasks need to be performed on closing, you do not
need to implement this function. Instead, the standard implementation closeImap() from the
library is used. This closes the folder and the store.

ﬂ Processes and automation

closeImap GMAIL: function
// hier kénnen eigene Aktionen vor dem SchlieBen ausgefiihrt werden

// Standardaktion, Folder und Store schlieBen.
MAIL INBOX.close(true
MAIL STORE.close

Mark message as processed or delete: The finalizeImap <connection name>() function is optional
and deletes the current message, or otherwise marks it as processed. If it is not implemented,
ELOam uses the standard implementation, which deletes a processed e-mail from the folder.

The following example does not delete the e-mail, but rather sets it to "read".

finalizeImap GMAIL: function
if (MAIL DELETE ARCHIVED && MAIL ALLOW DELETE
message.setFlag(Flags.Flag.SEEN, true

Process next message in the list: The nextImap <connection name> function is optional and returns
the next message in the selected mailbox to the ruleset for processing. If the function is not
implemented, ELOas will use the standard implementation, which sends every document for

processing.

The example shows an implementation that only processes unread e-mails. They can be used in
pairs with the finalizelmap implementation above, which sets e-mails as read rather than deleting

them.

Please note

If you work with this method, you must use another way to ensure that the mailbox does
not grow too large (such as by deleting automatically after a certain date).

nextImap GMAIL: function
if (MAIL POINTER > 0O
mail.finalizePreviousMessage (MAIL MESSAGE

for
if (MAIL POINTER >= MAIL MESSAGES.length

return false

Processes and automation

MAIL MESSAGE = MAIL MESSAGES[MAIL POINTER

var flags = MAIL MESSAGE.getFlags
if (flags.contains(Flags.Flag.SEEN
MAIL POINTER++

continue

MAIL ALLOW DELETE = false
MAIL POINTER++

return true

return false

Read e-mail body text: The getBodyText() function transfers the message as a parameter (available
in the script via the variable MAIL_MESSAGE) and returns the mail body as return parameter. It also
searches for the first MIME part of type TEXT/PLAIN. If no corresponding part exists, an empty

string is returned.

getBodyText: function(message
var content = message.content
if (content instanceof String
return content
else if (content instanceof Multipart
var cnt = content.getCount
for (var i = 0; i < cnt; i++
var part = content.getBodyPart(i
var ct = part.contentType

if (ct.match("~TEXT/PLAIN") == "TEXT/PLAIN"

return part.content

return

Identify sender: The getSender() function returns the e-mail address of the sender.

Processes and automation

getSender: function(message

var adress = message.sender

return adress.toString

Identify recipient: The getRecipients() function returns a list of all recipients (TO and CC). If there is
more than one recipient, the list is provided in column index format, assuming that the ELO

separator symbol 9 is transferred in the 'delimiter' parameter.

getRecipients: function(message, delimiter

var

var
if

var

var

for

adresses = message.allRecipients

cnt = 0
adresses cnt = adresses.length
hasMany = cnt > 1

result = ""

var i = 0; 1 < cnt; i++

if (hasMany result = result + delimiter
result = result + adresses[i].toString

return result

Available functions for sending e-mails

The send functions are not used directly by ELOas. They are utility functions for custom script
programming to conceal the complexity of the Java mail APl from the script developer.

Register SMTP server: The setSmtpHost() function registers the library of the SMTP host to be used.
This library is used to send e-mails. This function must be activated before the first sendMail call.

setSmtpHost: function(smtpHost

if

MAIL SMTP HOST != smtpHost
MAIL SMTP HOST = smtpHost
MAIL SESSION = undefined

Send e-mail: The sendMail() function sends an e-mail. The sender and recipient addresses are

transferred as parameters, in addition to the subject and e-mail text.

Processes and automation

sendMail: function(addrFrom, addrTo, subject, body) {

}

mail.startSession();

var msg = new MimeMessage (MAIL SESSION);

var inetFrom = new InternetAddress(addrFrom);
var inetTo = new InternetAddress(addrTo);

msg.setFrom(inetFrom) ;

msg.addRecipient(Message.RecipientType.TO0, inetTo);

msg.setSubject(subject);
msg.setText (body) ;

Transport.send(msg) ;

Send e-mail with attachment: The sendMailWithAttachment() function sends an e-mail. The sender
and recipient addresses are transferred as parameters, in addition to the subject, e-mail text, and
the object ID of the attachment from ELO. The attachment is stored as a temporary file in a

temporary path; sufficient space must be available at this location.

sendMailWithAttachment: function(addrFrom, addrTo, subject, body, attachId) {

mail.startSession();
var temp = fu.getTempFile(attachId);
var msg = new MimeMessage (MAIL SESSION);

var inetFrom = new InternetAddress(addrFrom);

var inetTo = new InternetAddress(addrTo);

msg.setFrom(inetFrom) ;

msg.addRecipient(Message.RecipientType.TO, inetTo);

msg.setSubject(subject);

var textPart = new MimeBodyPart();
textPart.setContent(body, "text/plain");

var attachFilePart = new MimeBodyPart();
attachFilePart.attachFile(temp);

var mp = new MimeMultipart();
mp .addBodyPart (textPart) ;
mp.addBodyPart(attachFilePart);
msg.setContent(mp) ;
Transport.send(msg) ;

temp[“"delete"]();

n Processes and automation

fu: File Utils

The File Utils functions help ELOas users with file operations.
fu: Available functions

Clean up file name: If you want to create a file name from the short name, it may contain critical
characters that can lead to problems in the file system (e.g. colon, backslash, and ampersand).
The clearSpecialChars() function replaces all characters other than numbers and letters with an
underscore (including umlauts and B).

clearSpecialChars: function(fileName
var newFileName = fileName.replaceALL("\\W",6 " "

return newFileName

Load document file: The getTempFile() function downloads the document file for the specified ELO
object to the local file system (in the ELOas temp folder). If the file is no longer required, it must be
removed again by the script developer using the function deleteFile. Otherwise, it will remain on
the hard drive.

Please note

This returns a Java file object, not a file name.

getTempFile: function(sordId
var editInfo = ixConnect.ix checkoutDoc(sordId, null
EditInfoC.mbSordDoc, LockC.NO
var url = editInfo.document.docs[0].url
var ext = "." + editInfo.document.docs[0].ext
var name = fu.clearSpecialChars(editInfo.sord.name

var temp = File.createTempFile(name, ext
log.debug("Temp file: " + temp.getAbsolutePath

ixConnect.download(url, temp

return temp

Delete file: The deleteFile() function expects a Java file object as a parameter (not a string) and
deletes this file.

Processes and automation

deleteFile: function(delFile
delFile["delete"

run: Runtime Utilities

This module contains routines for access to the Java runtime. This allows external processes to be
started or the current memory status to be queried.

Start process: The execute(command) command starts an external process. ELOas waits for the
this call to finish and only then does it continue processing. This allows actions in this process to be
evaluated as well.

log.debug("Process: " + NAME
run.execute("C:\\ Tools\\BAT\\dirlist.bat"
log.debug("Read Result"

var txt = dex.asString("dirlist.txt"

Query free and available memory: The freeMemory() and maxMemory() commands display the
currently available free memory and the maximum available memory.

log.debug "freeMemory: " + run.freeMemory() +

, maxMemory: " + run.maxMemory

Processes and automation

Examples

Example - Moving a document

A document needs to be moved in ELO.

1.

2.

Open the ELO Automation Services in the ELO Administration Console.

Click Add.

. Enter a new name for the rule, such as Move newsletter.

The new rule is created but not yet saved.

. Select a search metadata form.

In this example, the Marketing metadata form is used.

. In the Index search field, select the metadata form field that you want to use to select

documents.

In this example, the Status field is used. If the Status field contains the value sent, the
document will be moved. Documents with other values will not be moved.

. Enter "sent" as the search term.

Please note

If quotation marks are used in the example, they are necessary. If one or both quotation
marks are missing, this leads to an error.

ﬂ Processes and automation

v Interval control

Type
Interval 4) -
a2l @ Every 215 [Minutes | »
hd
Once every _ M
) D3 v H - 1 =
v hd

Start log.info("--> Start")
End log.info("--> End")

Fig.: Interval controls for rules
1. Define the interval that will pass before the rule is executed again.

Optional: In the Start and End fields, you can enter script commands that are executed at
the beginning or after the rule has been executed.

This example uses the log.info("<Any text>") command to mark the beginning and end of
the rule execution in the ELO Automation Services log file. This can be useful for
troubleshooting.

The path for the log file is as follows:

<installation path>\logs\<name of server instance>\as-<repository name>.log

v Target forms for rules selection

Add target form Available metadata forms

Enter form Marketing

Fig.: Selection of the available target forms

2. Under Target forms for rules selection, enter the metadata form that is used.

Processes and automation

v Rules

Repository + + X ©
Wizard Script

Name

Repository
Condition v
Filing path " MarketingINewsletterqSent"
q
Target form Marketing ~
Fields ©
STATMARKETING v "Sent and moved" x

Fig.: Rule settings

3. Under Rules, enter a name for the first rule on the Wizard tab.
In this example, the rule is named Filing.

4. Enter the target path to the Filing path field.
This example uses the following path:
"qMarketingfNewsletterqSent"

5. Under Target form, select the metadata form used above.

6. Click Add field (green plus icon) and select the field used above.

7. In the input field, enter the value that you want to apply to the field on the metadata form.
This prevents the rule from entering into an infinite loop.

This example uses the value: "sent and moved".

Global Error Rule + + X ©
Wizard Script

Name Global Error Rule
Condition OnError e
Filing path " Marketing|NewsletterError"
q
Target form Marketing M
Fields o
STATMARKETING v "Error moving entry" .

Fig.: Rules for errors
Optional: Under Global Error Rule, you can specify a rule that is triggered on errors.

This example uses the following path:

Processes and automation

"MarketingiNewsletterYError"

In this example, the value "Move error" is entered in the status field to prevent an infinite
loop here as well.

8. Save the ruleset.

No active ruleset, pausing

Excecuted Name Next run Run Action Status
14 Move newsletter 2020-04-02 14:39:43.220 Stop |Reload | Idle...
Direct Pool

1/0
Reload all

Fig.: ELO Automation Services status page, Reload
9. Go to the ELO Automation Services status page of and click Reload for the respective rule.

You can access the ELO Automation Services status page via the respective ELO Application
Server manager or via the URL with the following structure:

http(s)://<server name>:<port>/as-<repository name>/?cmd=status

The rule moves documents containing the character string "sent" to the Sent folder.

Processes and automation

Example: e-mail folder monitoring

The ELO Automation Services JavaScript library contains a module for sending and receiving e-
mails. This guide will explain how to use ELOas to monitor a mailbox.

Information

This example is not intended to simulate e-mail archiving. There are other modules in our
product range that better accomplish this task. Instead, it is intended to serve as a basis for
"autoresponders", i.e. programs that automatically trigger an action in response to an e-
mail message (for example, a user sends a registration e-mail, after which their account is
activated).

General approach

Before a ruleset can be created to process mailboxes, a mailbox connection must be created in the
mail module. As there are many differences and options here, it is not possible to work from a
simple configuration list. Instead, you have to create a connect method for each mailbox
connection. This must establish a connection with the e-mail server, select the correct mailbox,
and read the list of messages.

Every mailbox connection is given a simple, short name - e.g. GMAIL. This name is required at
various locations and must be "identifier-compatible", i.e. it must start with a letter and can then
contain additional letters or numbers (but no special characters, including letters with accent
marks). This name is required at various places in the ruleset and the JavaScript implementation.

Establishing the connection

The JavaScript library already has a definition in the standard installation for a connection with the
name GMAIL. We will use it for the example. As the connection name is used in special functions,
you can also define multiple connections in parallel and use them in various rulesets.

The standard function for establishing the GMAIL connection looks like the following:

connectImap GMAIL: function

var props = new Properties
props.setProperty("mail.imap.host", "imap.gmail.com"
props.setProperty("mail.imap.port", "993"
props.setProperty("mail.imap.connectiontimeout"”, "5000"
props.setProperty("mail.imap.timeout", "5000"
props.setProperty("mail.imap.socketFactory.class"
"javax.net.ssl.SSLSocketFactory"
props.setProperty("mail.imap.socketFactory.fallback", "false"

Processes and automation

props.setProperty("mail.store.protocol"”, "imaps"

var session = Session.getDefaultInstance(props

MAIL STORE = session.getStore("imaps"

MAIL STORE.connect("imap.gmail.com"
"<USER>@gmail.com"
"<PASSWORD>"

var folder = MAIL STORE.getDefaultFolder

MAIL INBOX = folder.getFolder ("INBOX"

MAIL INBOX.open(Folder.READ WRITE

MAIL MESSAGES = MAIL INBOX.getMessages

MAIL DELETE ARCHIVED = false

The example connects to the Googlemail server "imap.gmail.com" at port "993" via an encrypted
connection (mail.store.protocol - imaps). This information is entered to a property object. Your
own e-mail server may require other values - refer to the e-mail server's documentation for details.

Information

If you set up a Google e-mail account, you must first enable IMAP access to use this
method. This is possible under Settings > Forwarding and POP/IMAP > Activate IMAP.

Logon is then performed using the command MAIL STORE.connect. Enter the server name again, as
well as the mailbox user with password.

After logon, the Inbox folder is searched for first. However, any other folders can be monitored,
such as Sent:

MAIL INBOX = folder.getFolder("[Google Mail]/Sent"

Using the command MAIL INBOX.getMessages(), all e-mails in the folder are read and added to the
internal message list. This list will be processed later by calling the ruleset once for each entry in
this list.

The variable MAIL DELETE ARCHIVED determines whether the ruleset is allowed to delete messages
or mark them as processed after successful processing. If it is set to "false", as is preconfigured,
the message status is not changed. This is especially practical in the testing phase, as it is not
necessary to constantly create new e-mails. In production, this entry is normally set to "true".

Create ruleset

A simple ruleset to process the mailbox content consists of two main parts: the definition of the
search and the script to process the e-mails.

The search is defined as follows:

Processes and automation

search

name=>"MAILBOX GMAIL"</name
value>"ARCPATH: 1IMAP"</value
mask>2</mask

max>200</max

search

The search name "MAILBOX_GMAIL" signalizes that this is not a normal repository search, but
rather a search of a mailbox with the connection name GMAIL. The created ELO documents are
filed to the "IMAP" folder (via ARCPATH: 9IMAP) and created with form 2 (e-mail in a standard ELO
repository). Normally, the number of results is no longer relevant, but it should still be entered to
prevent an error message in the designer.

The script to run is essentially determined by the required function. A simple script could look like
the following:

script
log.debug("Process Mailbox: " + NAME);

OBJDESC = mail.getBodyText(MAIL MESSAGE);
ELOOUTL1 = mail.getSender(MAIL MESSAGE);
ELOOUTL2 = mail.getRecipients(MAIL MESSAGE, "1");
EM WRITE CHANGED = true;
MAIL ALLOW DELETE = true;

script

When the script is run, the message is available in the MAIL MESSAGE variable. Standard values like
e-mail text, sender, and recipient can be read from here. To simplify the process, the mail module
provides the help routines getBodyText, getSender, and getRecipients.

The subject is automatically used as the short name (NAME). The body of the e-mail is entered to
the extra text, and the sender and recipient are transferred to their corresponding metadata fields.
Last, the message is marked as processed as deleted via MAIL ALLOW DELETE.

The complete example will then look like the following:

ruleset

base

name>Mailbox</name

search

name>"MAILBOX GMAIL"</name
value>"ARCPATH: 1IMAP"</value
mask>2</mask

max>200</max

Processes and automation

search

interval>10M</interval
base
rule
name>List</name
condition condition
script
log.debug("Process Mailbox: " + NAME);

OBJDESC = mail.getBodyText (MAIL MESSAGE);
ELOOUTL1 = mail.getSender(MAIL MESSAGE);
ELOOUTL2 = mail.getRecipients(MAIL MESSAGE, "91");
EM WRITE CHANGED = true;
MAIL ALLOW DELETE = true;
script
rule
rule
name>Global Error Rule</name
condition>0nError</condition
script script
rule
ruleset

Monitored processing

This simple example has a significant disadvantage: when an e-mail has already been marked as
"processed" or deleted, and the process is canceled before the data could be saved in the
repository, a data set will remain unprocessed. This problem can be completely avoided by working
with a two-level approach: a new e-mail is initially only saved in ELO, but not deleted. The e-mail is
only deleted if a later run finds that it already exists in ELO.

This approach has two requirements: the e-mail must be uniquely identifiable, and the method
must check during processing whether the e-mail already exists in the repository. The first
condition is easy to meet: every e-mail has an internal mail ID. This can be saved to a metadata
field in ELO (such as in the default e-mail form in the field ELOOUTL3, which is intended for the
mail ID). The second condition can easily be met with a help routine from the ELOix module:
ix.lookupIndexByLine.

The changed script will then look like the following:

script
log.debug("Process Mailbox: " + NAME);

// if the message is already in the repository: then delete..

Processes and automation

var msgId = MAIL MESSAGE.messagelD;
if (ix.lookupIndexByLine(EM SEARCHMASK, "ELOOUTL3", msgId) !'= 0) {
log.debug("E-mail already exists in repository,

ignore or delete");
MAIL ALLOW DELETE = true;
} else {
O0BJDESC = mail.getBodyText (MAIL MESSAGE);
ELOOUTL1 = mail.getSender(MAIL MESSAGE);

ELOOUTL2 = mail.getRecipients(MAIL MESSAGE, "9");
ELOOUTL3 = msgId;
EM WRITE CHANGED = true;
}
script

Marking instead of deleting

In the standard implementation, a processed e-mail is deleted from the mailbox. This is
undesirable in some cases. However, a marker can be set for the messages instead. A possible
candidate is the "read" flag. A processed e-mail message is set as "read" by ELOas and thus differs
from a new e-mail. In this special case, additional methods have to be defined in the mail
JavaScript library in addition to the connectImap method:

nextimap_GMAIL(): This function switches to the next message. In this example, you have to check
whether an e-mail has already been marked as read, and can skip over it if needed.

finalizelmap_GMAIL(): This function marks the processed message. In the standard
implementation, the message is deleted. In our example, however, it should only be marked as
read.

nextimap_GMAIL

This function switches to the next message. It goes through the list of messages in sequence. The
current position is saved in the MAIL POINTER variable. If a message has already been marked as
read, it is skipped. At the first unread message, it is activated (meaning, copied into the

MAIL MESSAGE variable) and the value "true" is returned. If there are no further messages, a "false"
value is returned. ELOas finishes processing this ruleset and then switches to the next.

nextImap GMAIL: function

for
if (MAIL POINTER >= MAIL MESSAGES.length

return false

Processes and automation

MAIL MESSAGE = MAIL MESSAGES[MAIL POINTER

var flags = MAIL MESSAGE.getFlags
if (flags.contains(Flags.Flag.SEEN
MAIL POINTER++

continue

MAIL ALLOW DELETE = false
MAIL POINTER++

return true

return false

In addition to switching to the next message, initialization takes place: the variable

MAIL ALLOW DELETE is set to false. This value should only be set to true when an object has been
processed within the ruleset. In this case, the e-mail is marked as processed in the finalizelmap
method.

finalizelmap_GMAIL

The finalizeImap GMAIL function must mark an e-mail as processed. This is done by setting the
SEEN flag. However, it may only be set if the connect method allows it at all

(MAIL DELETE_ARCHIVED), and the ruleset has marked the current e-mail message as archived
(MAIL ALLOW DELETE).

finalizeImap GMAIL: function

if (MAIL DELETE ARCHIVED && MAIL ALLOW DELETE
message.setFlag(Flags.Flag.SEEN, true

Processes and automation

Example - migrating a document database

For our internal "Improvement suggestion scheme", we have to migrate a database with about
1400 entries to ELO. The metadata and the documents are located in this database. In ELO, we
want to create a folder every time metadata is entered, which then contains the actual document
as a child entry. ELOas has been selected as primary tool for the migration.

Since ELOas currently cannot create documents, a dummy entry had to be initially created for each
folder. Fortunately, the entries in the database have been numbered consecutively from 1 to 1440.
For this reason, the dummy folders were relatively simple to create using a VBS script. All folders
were created within another folder with the object ID of 274312.

Set ELO = CreateObject("ELO.professional"
Elo.CheckUpdate 0

for i=1 to 1440
call Elo.PrepareObjectEx(0, 4, 337
Elo.0ObjShort="TrackId " & i
Elo.0ObjIndex="#274312"
call Elo.SetObjAttrib(2, i
call Elo.SetObjAttrib(0, "GilleM"
call Elo.SetObjAttrib(3, "Produktverbesserung"
Elo.UpdateObject

next

Elo.CheckUpdate 1

After this, ELOas is called. The data is collected from an SQL database:

"select Editor, Email, TheSubject, LTrim(BunFieldl) BunFieldl,
ClassName, Task

from [InetHelpDesk].[dbo].tblTasks a,
[InetHelpDesk].[dbo].tblBatch b,
[InetHelpDesk].[dbo].tblClass c,
[InetHelpDesk].[dbo].tblUser d

where a.BunID = b.BunId
and a.KlaID = c.KlaID
and a.UsrID = d.UsrID
and AufID = " + ETS_COUNT

& Microsoft SQL Server Management Studio

Datel Beabeiten Ansicht Abffage Projekt Extras Fenster Community 2
ANewesbiage [y BB EH D Sd@ B EHBEBS

Processes and

automation

% 73| InetHelpDesk v | ¥ Ausfiren v B B3 B 02 (AL T W 3 § = EES
Objekt-Explorer ~ & X srvt02.InetHelpDesk - Tracker.sql*| svt02.InetHelp... - SQLQuerylsgl | Zusammenfassung - x
Verbinden - | %1 IE] select * from thlAuftraege where DerBetreff like '%Oppenhoff-HOLME ProjektNr./P11201-1%" =i
b :j :Egggn = select * from thlBuendel
@ |J eloam .
13 dosm_mx select * from thlKlasse
@ (3 cloam Jdap select * from thlUser
@ | eloam_neun
& | eloam_Rudd , Email, ££, LTrim(BunFel
& | eloam_schalow
& | eloam _schusterc 3
@ () eloam60 < e
@ | eloam70 =
[preie 3 Ergebrise |y Meldungen
@ |J Enterl Bearbeiter _ Email DerBeteff BunFeld] KlassenName Aufirag A
& Enter2 1 [MichaelGille | Netzwerkscannerpfad in ProfileOpts (Datenbank) stattlo... - Administration, Installation, Reporting Varschlag soll
: tj i‘al;zk 2 Michael Gille mail@henzler de Belassen von persénlichen Profilen (Scanprofile) in Reg... Administration, Installation, Reporing Vorschlag muss gepr
® L Daterbarkdagramme 3 iNetDmin Dialog nach Aktvierung der O o g Vorschlag soll margin-boto.
© [Tabelen 4 iNethDmin Auschecken Bearbeiten im ELO Previewfenster Anzeigen, Bearbeiten, Sortieren, Versenden, Verw... Vorschlag muss
® [Systemtabelen 5 iNettDmin stefanbonanati@pem-gmbh.com PDF Dokumente an Archivdokumente anhangen aus Po... ~ Links, Referenzen, Dateianhange Verschlag soll b
e zz:g:mg:«;s 6 iNeWDmin mail@henzlerde Ltschen des Archiveinirags nach Verwerfen eines neue... Anzeigen, Bearbeiten, Soreren, Versenden, Verw... Vorschlag muss
[oeasiiiuc A 7 iNewDmin krickert@elo.com Anzeige von Mictosat Visio Dateien OffcefExplrer Intsgraion 9
@ = doo.tBetrefis 8 iNetDmin & o ufistung Haftnofizen, Stempel Vorschlag soll
@ 3 dbo. thBGSuperUser 8 iNetDmin d offnen im Archiv per Doppelkiick Stichworlisten, Verschlagwortung, Ablagemasken,.. Vorschlag muss gepr
5 doothluende 10 iNetDmin m.schneider@elo.com Zugrifi auf Terminalserver direkt gegen Indexserver prog... Administration, Instalation, Reporting Vorschlag soll
® O dbo.thiGebasude 11 iNeWDmin aschulz@elo.com Umstandiiches auswahlen eines Awenders aus einerL... Anzeigen, Bearbeiten, Sortieren, Versenden, Verw.. Vorschlag soll
@ I dbo.thiGerasteBestand 12 Michael Gille de b.2307 und automatis... Stichworlisten, Verschlagwortung, Ablagemasken... Vorschlag muss
@ O dbo.thiGeraeteTypen 13 Michael Gille uwe.gross@arivato.de Fehlethatte Eingabe von Datumswerten nach DIN 130 8. Varschlag soll
B o 14 iNetDmin aschul:@elo.com Geschwindigkeit beirm Checkin Prazess Anzeigen, Beatbsiten, Sortisren, Versenden, Verw... Vorschlag soll
® 1 doo.thiltiLinks 15 iNetDmin aschulz@elo.com Mehrfach Checkin von Dokumenten 3 o
@ = dbo.thklasse 16 iNetDmin Geben Sie bitte bei ‘Betreff” sine aussagekriflige Bezei.. Administration, Installation, Reporting o
& 1 dboothllizenzen 17 iNetDmin aschulz@elo.com Verbesserung
5 doothioptoren 18 iNetDmin aschulz@elo.com NULL
® O dbo.tbProtokol 19 iNetADrmin Neu123 5 Verschlagwortung | Ablage
@ I dbo.thiProtokol_Server 20 iNewWDmin magille@elo.com NULL
& 3 dbo.thiQueries 21 iNetDmin m.gille@elo.com NULL
= :g:s}g:;g"jﬁ 22 iNetDmin magile@elo.com 6 Haftnotizen | Annotations
& 1 doo.toReporte 23 iNetDmin 4 Bearbeiten
& J dbo.thRessourcen 24 iNetDmin magille@elo.com 2 Scannen Postbax
& O dbo.tbRessourcenUser 25 iNetDmin mgile@elo.com NULL
@ I dbo.thisearchResult
iNetaDrrin Niedi
® O dbo.tiSsrienaufgaben 28 NethD edria
@ O doothisettings 27 iNeWDmin frank giebeler@gmx.de NULL
@ O doo.thisLA 28 iNewWDmin magille@elo.com NULL
& O dbo.thiSprachen 29 iNettDmin thomas.koller@wienerlinien.at Mittel
Lt nmiamd 30 iNetDmin thomas koller@wienerlinien.at NULL
& =1 cho.thiTexthausteine 31 iNetDmin thomas keller@wienerlinien.at NULL
& 3 dbo.thiTextGruppe 32 iNetDmin thomas koller@wienerlinien.at NULL.
8 i dbo.thluser 33 iNetDmin thomas koller@wienerlinien.at NULL
o :z:s}szﬁg:jz’:w 34 iNetDmin thomas koller@wienerlinien.at NULL
® I doo, thWFaktiv 35 iNetDmin Test Scannen Postbox
@ = doo.thiWorkFlowDetals 36 iNewDmin M Brueckner@kriesten.de Ausblenden gesperrter User beim Dokumentenversand .. Administration, Installation, Reporting Vorschlag wird realisiert <htmi><head> <style>p{margin-top:Opxmargin-batto.
8 jhdﬂﬂ»lh‘WkaFbWS 37 iNewDmin a:schulz@elo.com NULL E
@ (3 Sichten)
@ 08 Synonyme || (@ Die Ablrage wude erfogieich ausgefi SAO2(30RTM) ELOThiele (150) InetHelpDesk | 00,0001 | 1440 Zeien
Bereit 28 5211 Z6i 211 EINFG

Fig.: SQL database

This is a somewhat extensive SELECT statement, which otherwise offers no special features. There
is only one point worth mentioning: in the Select list, there is a column titled LTrim(BunFieldl)
BunFieldl. In the database field BunFieldl, the data is partially saved with leading spaces, which
we don't want. These are removed with LTrim. However, this means that the column would no
longer have a hame, which is why the column name is subsequently specified as BunFieldl. This
technique should always be used when calculated values are to be used in the Select list.

The complete ruleset will look like this:

<ruleset>

<base>

<name>ImportTracker</name>

<search>

<name>"ETS COUNT"</name>

<value>"*"</value>
<mask>337</mask>
<max>200</max>
</search>
<interval>1H</interval>
</base>
<rule>
<name>Rulel</name>
<condition></condition>

Processes and automation

<script>

/* The data for the current folder is

*/ loaded from the database here

var item = db.getlLine(1l, "select Editor, Email, TheSubject,

LTrim(BunFieldl) BunFieldl, ClassName, Task
from [InetHelpDesk]|[dbo].tblTasks a,

[InetHelpDesk] . [dbo].tb1Batch b,

[InetHelpDesk] . [dbo].tblClass c,

[InetHelpDesk!.[dbo].tblUser d

where a.BunID = b.BunId and a.KlaID = c.

/* ETS_COUNT contains the record number, which is cleared after successful processing. *
ETS COUNT = "*";

/* The short name field is completed from the database, please note maximum field length
NAME = item.DerBetreff;

if (NAME == "") { NAME = "unknown"; }

if (NAME.length() > 127) { NAME = NAME.substring(0, 126); }

// The initiator is populated from the database.
ETS MAIL = item.Email;

/* The subject field was assigned different keywords in the database than in the reposit
/* translation table is used here for this reason.

A column index is used in ELO. */
var thema = item.BunFeldl;

if (thema == "Administration, Installation, Reporting") { thema = "AdministrationfInstal
if (thema == "Display, Sort, Edit, Send, Manage, Search") { thema = "Document Editing{Vi
if (thema == "Display, Edit, Sort, Send, Manage, Search") { thema = "Document Editing{Vi
if (thema == "User Interface, Design, Menus, Navigation") { thema = "UsabilityYInterface
if (thema == "Sticky notes, Stamps") { thema = "Annotations"; }

if (thema == "Office / Explorer Integration") { thema = "Office Integrationy0S Integrati
if (thema == "Offline availability") { thema = "Offline"; }

if (thema == "Links, References, Attachments") { thema = "LinksYReferences"; }

if (thema == "Scanning, Intray, Conversion, Printing") { thema = "ScanningfIntray9YConver
if (thema == "Security, Login, Encryption, User rights") { thema = "User rights"; }

if (thema == "Keyword lists, Metadata, Metadata forms, Versioning") { thema = "Metadata€
if (thema == "Workflow, Tasks") { thema = "WorkflowYTasks"; }

if (thema == "Interfaces, Scripts") { thema = "ScriptingfInterfaces"; }

ETS THEMA = thema;

ETS USER = "Product management";
ETS STATUS INT = item.ClassName;

H Processes and automation

EM_WRITE_CHANGED = true;

//* The database information has now been entered. Only the document still remains unpro
This will be created as an HTML file with an XML control file

for the ELO XML Importer.. First, the HTML file is written:*/

var id = Sord.getId();

var dataFile = new File("d:\\temp\\trk\\" + id + ".htm");

Utils.stringToFile(item.Order, dataFile, "IS0-8859-15");

/* Next, the XML data stream is created.
As the metadata is entered in the folder, only rudimentary metadata can be found here

var xmlDesc = NAME.replace("\"", "'").
replace("&", "&amp;").

("<", "&lt;").

replace(">", "&gt;");

var xmlFile = new File("d:\\temp\\trk\\" + id + ".xml");
"<?xml version=\"1.0\" ?><eloobjlist

replace

var xmlText
ver=\"1.0\"><obj><desc value=\"";
xmlText = xmlText + xmlDesc;
xmlText = xmlText +
"\"/><type value=\"0\"/><destlist><destination
type=\"1\" value=\"#";
xmlText = xmlText + id;
xmlText = xmlText + "\"/></destlist><docfile name=\"";
xmlText = xmlText + id;
xmlText = xmlText + ".htm\"/></obj></eloobjlist>";

// The XML file is written last.
Utils.stringToFile(xmlText, xmlFile, "UTF-8");

</script>

</rule>

<rule>
<name>Global Error Rule</name>
<condition>0nError</condition>
<script></script>

</rule>

</ruleset>

After ELOas has entered the metadata the database and created the HTML and XML document
files, the ELO XML Importer imports the HTML files into the corresponding folders. This concludes
the migration process. Time required for the complete project: about 4 hours.

ﬂ Processes and automation

Example - Treewalk for ELOas

There is a tree walk function available in ELO Automation Services to help process documents. This
makes it possible to not only process search areas, but also to run through entire tree structures.

Introduction

Normally, ELOas performs a search for an index field to determine the list of documents to be
processed. Alternatively, however, a "tree walk" can also be performed. With this tree walk,
individual branches, or even the complete repository can be run through. Each entry is read twice:
once a folder is entered, after which all child entries are run through, and then again when the
folder is exited.

Example: We will use a filing cabinet metaphor, with the highest level folder titled "cabinet", then
"folder", then "folder tab". The cabinet contains folders 1 and 2. Folder 1 contains folder tab 1.1.
The following process then results:

Cabinet (enter)

Folder 1 (enter)
Folder tab 1.1 (enter)
Folder tab 1.1 (exit)
Folder 1 (exit)

Folder 2 (enter)
Folder 2 (exit)
Cabinet (exit)

A script can check whether the ruleset is called in the ascending branch (entering) or in the
descending branch (exiting) using the EM_TREE_STATE variable. This contains 0 when entering and 1
when exit. Saving is only performed on exit. Changes that are performed upon entering the
branch, however, will be retained until it is exited, even if a number of other objects were edited in
the meantime.

A treewalk is initiated when the group name of the search index is entered as "TREEWALK", and as
a search term the number of the starting node. No rules can be called on the start node. They are
only performed on child entries.

Usage example

The following example runs through a branch and sets an internal ID (Trackld) for all objects of
form type 6 (Track Item). The starting folder has the ID 3352.

In this simple example, no error handling has been provided, and for this reason the error rule is
empty.

E Processes and automation

ruleset

base

name>Create TrackId</name

search
name>"TREEWALK"</name
value>3352</value
mask>6</mask
max>200</max

search
interval>10M</interval

base

rule
name>CreateId</name
script
if ((EM_TREE_STATE == 1) && (EM_ACT_SORD.getMask() == 6)) {
// Only process TrackItems
//cnt.createCounter("ETSTrackId", 10000);

if (ETS TICK == "") {
log.debug("Create new TrackId: " + NAME);

ETS TICK = cnt.getTrackId("ETSTrackId", "V");
EM WRITE CHANGED = true;

}
script

rule

rule
name>Global Error Rule</name
condition>0nError</condition
script
script
rule

ruleset

The interesting part of the ruleset lies in the script area, which for this reason will be discussed for
each line individually in the following:

if ((EM_TREE_STATE == 1) && (EM_ACT_SORD.getMask() ==

m Processes and automation

The script should only be run when exiting the branch (EM_TREE_STATE == 1), and only on objects of
type TrackItem (EM ACT SORD.getMask() == 6).

// Only process TrackItems
//cnt.createCounter("ETSTrackId", 10000);

The example uses a counter, which must be created in advance, for example through the
command entered above. However, it can only be created once, as otherwise the Trackld will be
continually reset.

if (ETS TICK == ""

A Trackld is only created if one does not exist yet (metadata field ETS_TICK is empty).

log.debug("Create new TrackId: " + NAME

ETS_TICK = cnt.getTrackId("ETSTrackId", "V"

To create track IDs, there is a practical method in the counter module cnt: getTrackId(
<CounterName>, <prefix>). This method takes a new counter value and supplements it with the

prefix and a checksum. In the example, track ID V10001C2 is created from the counter value
10001.

EM WRITE CHANGED = true

The object is only saved if a new track ID has been created.

The ruleset is executed every 10 minutes and passes through the complete track item folder. All

entries without a track ID are automatically supplemented, regardless the client they were created
with.

Runtime environment variables

When the ruleset is executed, there are a large number of other variables that can be used for
processing in addition to the EM_TREE_STATUS value.

Name Content

Specifies whether the ruleset is executed in the ascending branch (0) or
descending branch (1).

EM ACT SORD Contains the SORD object with the current object data.

EM_TREE STATUS

Processes and automation

Name

EM_PARENT SORD

EM_ROOT_SORD

EM_INDEX LOADED

EM_TREE_LEVEL

EM_TREE_MAX LEVEL

EM_SAVE_TREE_ROOT

EM_TREE_EVAL_CHILDREN

EM_TREE_ABORT WALK

Content

Contains the SORD object with the data of the parent node. This data can
in principle also be changed. However, you have to make sure these
changes are saved. In addition, the change must be recognized in the
descending branch and the EM\ WRITE\ CHANGED flag set to true.

Contains the SORD object with the start node. As the ruleset is not applied
to this entry, you will have to save your changes manually. This can take
place by setting the variable EM_SAVE_TREE_ROOT.

In contrast to processing after a search, it cannot be assumed with a
treewalk that a loaded SORD object has a specific form type. In principle,
any form can come up. The preset index variables from the metadata
fields can, however, only be generated and filled that have been
registered in the definition under <mask\ and under <masks>. In this
case, the variable EM_INDEX LOADED is set to true. If the form is unknown,
the metadata fields can only be accessed via the EM_ACT_SORD object;
EM_INDEX LOADED is set to false.

Information: when the index variables are filled, the metadata fields in
EM_ACT SORD should not be directly edited. These changes will then be lost
before saving if the index variables are rewritten.

With this variable, you can determine where you are within the treewalk
(what level). The child entries in the start node are located at level 0 (for
the start node, no rules are called).

You can set a maximum depth with this rule. Child entries nested deeper
than this will be ignored. Normally, this value is set to 32. If it must be
changed, it can be set to the desired value before processing in the
onstart routine.

No rules can be called for the treewalk start node. If this has been
changed through access via EM_TREE_ROOT or EM_PARENT SORD, the variable
EM SAVE TREE ROOT must be set to register these changes.

<onend>var result = ..var oldstate = ..EM SAVE TREE ROOT = result !=
oldstate;log.debug("now save root: " + EM SAVE TREE ROOT) ;</onend>

If a run determines that a subarea should be excluded from processing,
the variable EM_TREE_CHILDREN can be set to false. This value will only be
evaluated for an ascending branch (with a descending branch, it would
have been too late anyway, as the subarea would already have been
processed) and it will be initiated for every object set to true (standard
behavior: run through the entire subarea).

If you want to abort a run completely, you can set the flag

EM TREE_ABORT WALK at any time. In this case, no more child entries are
passed through. Additional entries at the same level that have not been
processed will also remain unprocessed. This flag can be set to cancel
processing after a fatal error.

n Processes and automation

Name Content

Information: In the onstart routine, necessary runtime controls can be
performed to check whether the treewalk may be performed at all. If not,
this flag can be used to cancel the run.

Processes and automation

Example - Workflow processing

An extension exists to process workflow tasks. In a workflow, individual person nodes can be
created for the ELOas account. If a workflow activates this node, an ELOas "WORKFLOW" search
can be used to find and process a list of the active workflow tasks. This can be used to add the
metadata and forward the workflow.

The necessary rulesets must be created at the XML level.

Collecting the workflow task list is essentially the same as a normal search. Enter "WORKFLOW" as
the metadata field name. The search term itself will be ignored and should remain empty.

base

name>Workflow2</name

search
name=>"WORKFLOW"</name
value></value
mask>13</mask
max>1000</max

search
interval>1M</interval

base

Even if a search form is not required to collect the list, a search form must still be specified. From
the list of tasks, only those workflows will be processed that have this form. This is necessary in
order for the index data to be able to be loaded in the local JavaScript variables. If a workflow
should be able to use more than one form type, the ruleset must be entered multiple times.

Information

In the list of deadlines, no "FindFirst - FindNext" action will be performed. If there are a
number of tasks that will not be processed, this can lead to no new tasks being found for
actual processing.

When processing workflows, there are two activities in addition to changing the metadata:
forwarding and changing the workflow. The following example shows how the workflow can be
influenced depending on the current metadata. In addition, a simple approval workflow will be
examined, for which the person processing it is not clear at the start. This person will be entered in
the course of the workflow to the PROCESSOR index field by the mailroom department. In the
template, the processor node is first initialized with Owner. The correct value is read from the
PROCESSOR index field at runtime, then entered to the node. ELOas then runs under the ELO name
elowf with a person node between the mailroom and the claims processor.

88 Processes and automation

’ Workflowdesigner &'

<P Sfe AamAYITHLR E

Filtern -

Technische Workflows einblenden
I = % ELOasRechnungsflow
ELOas Rechnungsflow 80 Centimer

ll ELOASTemplate 0.22864068840856921

ELOAS Template 0.33034219841669954
A Poststelle

ELOAS Template 0.3356841831427092
Eigentiime

»

ELO AS Template 0.3405687915637744 Knoteneinstellunger

ELOAS Template 0.436684525791213

o) Sachbearbeitung

ELO Service
ELOAS Template 0.6163535777920337
ELOAS Template 0.738298782646041 & Sachbearbeiter
ELO AS Template 0.7770204717243243 Eigentumer LD
ELOAS Template 0.8346773251930841 B zuriickan Sachbearbeiter
N
ELOAS Template 0.8997917386855412 o n
.
[l Buchhaltung

© & 8 adov

Neu Kopieren

: =

Versionen (1) Berechtigungen # Suchen
ﬁ E Eigentiimer ®
Laden Speichern
> Ubersetzungsvariable
£ x
®
PDF-Ausgabe Léschen -
4 » -

I 0 Vorlage-ID: 1028, Version: 1.0 (Arbeitsversion) Ubernehmen “ Abbrechen

Fig.: Workflow designer, workflow template with ELOas

When the workflow arrives at ELOas, the mailroom will have defined the claims processor. ELOas
reads the PROCESSOR metadata field and enters the value to the Processor successor node. This
takes place through the following simple rule:

<rule>
<name>Expand Name</name>
<condition></condition>
<script>
log.debug("Process WF: " + NAME);

wf.changeNodeUser("Employee", EMPLOYEE);

EM WF_NEXT = "0";
</script>

</rule>

Changing the ELO user name is performed by the wf.changeNodeUser command. Enter the workflow
name as the first parameter and the ELO user name as the second. The library wftakes care of the
rest (locking the workflow, searching for the node, refreshing users, saving the workflow, releasing

the lock).

ﬂ Processes and automation

After the user name has been set, the workflow has to be forwarded. This takes place by setting
the variable EM_WF_NEXT. If left empty, nothing will be forwarded. The task remains the same (which
should not remain as is forever, as at some point the list of deadlines will overflow). Once all
conditions for forwarding have been met, then either the connection number or the name of the
successor node can be specified. If there is only one successor, then the connection number can
be entered: EM WF_NEXT = "0";.

If there are multiple successors, the name of the successor node should be entered instead. It will
also be assumed that the process will automatically be booked after the person processing it has
forwarded it, meaning the accounting node will also be transferred to ELOas. This runs a script that
audits the accounting data. If the script runs successfully, the function ERPverify() will return true
and the workflow is forwarded to the Charge account node. If an error occurs, the workflow is
returned to the claims processor. The script could then look like the following:

If (ERPverify

EM WF_NEXT = "Book"
else
EM WF _NEXT = "Employee"

m Processes and automation

Filing via ELO Dropzone

ELOas filing via ELO Dropzone tiles

ELOas 20.0 enables automatic filing via ELO Dropzone tiles. In an ELO Dropzone tile, you can define
metadata for new documents. The following step-by-step guide will explain how to configure
automatic filing.

Please note

Automatic filing via ELO Dropzone requires the latest ELOas standard libraries. You will find
them on the official download page http://www.forum.elo.com/script/20/eloinst.html. You
also need an ELO XML Importer license to automatically file documents using a Dropzone
tile.

Step by step

1. Create the individual ELO Dropzone tiles using the ELO Dropzone module. The tiles are
stored in // Administration // Dropzone. The tile definition is saved in the entry's extra text.

2. The "ELOas Base" folder contains a "Tiles" child folder. The required ELO Dropzone tiles are
referenced to this folder. ELOas does not differentiate between personal and global tiles.

“Eo- Repository (Farrell) -] X

Document Repository View Tasks Search ribbon
8 Send document [2] Reference
= 6 [d = & 5 © X
@ S — [sendasELOlink £ Move
Back Document New Openinread- Document Go Check out Edi Chec Keywording Copy Delete
B fromtemplate folder only mode versions to and edit document N Send as PDF
VElE CLU TEXuEdUET N |:|
<« Preview >
> [ELOapps v
4 ELOas Base Documentfolder Keywording Form Full text database Feed Web application
Direct Type .~ Shortname . Date ~ Filed by ~ Version
[Java &) Claims Farrell
b [I8 JavaScript &) Contelo Farrell
D OptionalJsLibs
P &) Invoices Farrell
[Rules
o B Tiles Orders Farrell
@ Claims
@ Contelo
@ Invoices
Orders
LU Translate

D ELO-Textreader
> @B ELOWfBase

snn ERCLLSIGIWAN Secarch Tasks L Intray

4 entries Repository // Administration // ELOas Base // Tiles

Fig.: Folder with referenced ELO Dropzone tiles

1.

http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html

H Processes and automation

A monitored directory is defined in the ELOas configuration file "config.xml".

<entry key="monitordir">C:\temp\ELOAsMonitor</entry=

One child folder is expected for each tile. Existing tiles must have a unique name for automatic
filing to work.

I ¥ = | ELOAsMonitor - O X
“ Home Share View o
<« v M <« Local Disk (C:) > temp > ELOAsMonitor v 0 D Search ELOAsMonitor
A

3¢ Quick access
[Desktop 4 lé
; Downloads I
| Documents 2
S| Pictures Free entry RegExpTile
Admin Console
Admin Console
J) Music
skriptbeispiele
3 This PC
- 3D Objects
[Desktop

=] Documents

v
2 items S5 E
Fig.: Monitored directory

The files that are later automatically transferred to the repository by ELOas based on the tile
definition land in these individual child folders.

Processes and automation

+ | RegExpTile - O X

File Home Share View v o

¢I%H
<J

v N « temp > ELOAsMonitor > RegExpTile v O O Search RegExpTile

~

[&] Pictures A~ Name Date modified Type Size
Admin Console [Computer Invoice 4/29/2020 8:56 AM PDF File 3021
Admin Console 13 ELOas 12.01 3/30/2020 2:08 AM Microsoft Word D... 242}

D Music ™ Invoice 2/19/2020 2:07 AM Outlook ltem 120

skriptbeispiele

[ThisPC
) 3D Objects
[Desktop
Documents
4 Downloads
D Music
[&] Pictures
B videos
‘e Local Disk (C) v < >
Jitems 1item selected 301 KB =3 &

Fig.: Individual documents in the child folder before automatic filing

1. Regular expressions are configured in the metadata for the "Tiles" folder. These are then
available for all tiles.

Metadata X
£l

Available forms < Permissions Version history Additionalinformation

[Filter Basic Extra text Options

Text.Miroslav=www\(.+)\com
ELO Business Solution Text.ELO_REG_EXP=ELO(.+)

ELO Business Solution Configuration
ELOScripts

Folder

Form

Invoice

Marketing

Process

Process Contact

@

’ ["_:r’ ‘E‘ Expand keyword list automatically @

Routine

E Processes and automation

Fig.: Regular expression in the metadata for the 'Tiles' folder

1. With ELOas 11.0, a new rule type has been introduced for filing via an ELO Dropzone tile. The
"<name>" section contains the "TILE" value and the "<value>" section contains the name of
the referenced ELO Dropzone tile.

“Eo- Repository (Farrell) -] X
Document Repository View Tasks Search ribbon
3| [Send document [#] Reference
% Q3 @ @ B » & E Diwtmm [y Brme o
Back Document New Openinread- Document Go Check out Edit Chec Keywording enc.as in Copy ove Delete
B fromtemplate folder onlymode versions to andedit document in Send as PDF
Eroava " =
« i »
D |] JavaScript Preview @
4 OptionalJsLibs Documentfolder Keywording Form Full text database Feed Web application
] r
a Rules & A ab
D Claims a
<ruleset=
D Contelo <base>
N <name=InvoiceTest</name>
[Invoices
<search>
) New ruleset <name>"TILE"</name=
D Orders <value="Invoices"<Nalue>
<mask=(E10E1000-E100-E100-E100-E10E10E10E30)</mask=>
sol.common_monitoring.as.Exampl <max>=200</max>
- </search>
&] sol.common_monitoring.as.JobQue . .
<interval=1M</interval=
> [Tiles <onstart=</onstart=
</base>
[1 Translate
<rule=
D ELO-Textreader <name=Rule1</name=
b @ ELOW Base <coqd|tlon><lcond|t|on>
=<script=
B FLOxc Rase - I Nothing to do
‘4 » hd

EEE REWTIGIA Scarch Tasks 0 Intray

Fig.: ELOas rule for filing via ELO Dropzone

At defined intervals, ELOas checks the monitored tile directory to see whether it contains new
documents to be filed. If this is the case, it files them. Existing folders are skipped. In a tile, you
can define that local documents should be deleted after they are filed to the repository. If errors
occur during filing, the problematic files are moved to a child folder named "Errors" so that ELOas
does not repeatedly process them.

m Processes and automation

Barcode

Introduction

ELO Automation Services offer a utility class ELOasUtils with functions for reading and writing
barcodes. The Softek library and ZXing library can be used for barcode functionality.

Information

For more information on the Softek library, go to: http://www.bardecode.com/enl/app/
barcode-reader-toolkit-for-windows/.

Further information on the ZXing library can be found at: http://zxing.qgithub.io/zxing/
apidocs.

http://www.bardecode.com/en1/app/barcode-reader-toolkit-for-windows/
http://www.bardecode.com/en1/app/barcode-reader-toolkit-for-windows/
http://www.bardecode.com/en1/app/barcode-reader-toolkit-for-windows/
http://zxing.github.io/zxing/apidocs
http://zxing.github.io/zxing/apidocs
http://zxing.github.io/zxing/apidocs

E Processes and automation

Reading barcodes with the Softek library

From ELOas version 10 onward, you can read barcodes using the Softek library. Barcodes are
recognized via the Softek barcode DLLs "SoftekBarcodeDLL.dll" or "SoftekBarcode64DLL.dlIl",
depending on the operating system (32/64-bit). Barcode recognition is used in an ELOas script as
follows:

var barcodeReader = Packages.de.elo.mover.utils.ELOAsUtils
createBarcodeReader2 (emConnect

var barcodeFile = new File("C://temp//BarcodeFile.tif"

var barcodeCount = ScanBarCode (barcodeFile.getPath

log.info("barcodeCount=" + barcodeCount

var barcodeDescr = GetBarString(barcodeCount

log.info("barcodeDescr=" + barcodeDescr

Barcodes formats in the Softek library

Refer to the official Softek library documentation for supported barcode formats. The following
formats are supported:

* Codabar 1D

* Code 128 1D

* Code 2 of 5 Datalogic 1D
* Code 2 of 5 latal 1D

* Code 2 of 5 lata2 1D

* Code 2 of 5 Industrial 1D
* Code 2 of 5 Interleaved 1D
* Code 2 of 5 Matrix 1D

* Code30f91D

* Code 3 of 9 Extended 1D
* Code 93 1D

* EAN-8 1D

* EAN-13 1D

* GS1-128, UCC-128, EAN-128 1D
* GS1-Databar 2D

* Patch Code Symbols 1D
* UPC-A 1D

* UPC-E 1D

* QR-Code 2D

» Data Matrix ECC200 2D
e Micro-PDF-417 2D

* PDF417

H Processes and automation

Example for reading a QR code

You can enable the function to read QR codes with the ELOas instruction:

"barcodeReader.setReadQrCode(1);"

Information

The methods of the BarcodeReader class are described in the official ELOas JavaDoc.

http://www.forum.elo.com/javadoc/as/21/de/elo/mover/main/barcode/BarcodeReader.html
http://www.forum.elo.com/javadoc/as/21/de/elo/mover/main/barcode/BarcodeReader.html

Processes and automation

Reading barcodes with the ZXing library

Barcodes are read via the static getBarcode method of the ELOas class ELOAsUtils. In this method,
the file, the file page with the barcode, and the barcode configuration are transferred as
parameters.

String barcode = ELOAsUtils.getBarcode(IXconnect ixConnect, File file
int page, String barcodeConfig

The individual settings in the barcode configuration are separated by a pipe symbol. An example
configuration could look like this.

Example

String barcodeConfig = "POSSIBLE FORMATS:CODE 128,QR CODE |
CHARACTER SET:UTF8|ALLOWED EAN EXTENSIONS:2,5|
PURE_BARCODE : TRUE |RETURN_CODABAR START END:TRUE |
ASSUME_CODE_39 CHECK DIGIT:TRUE|TRY HARDER:TRUE"

In addition, the method getBarcodeResult is available in the class ELOAsUtils. This method returns
the entire barcode result.

Example

Result barcodeResult = ELOAsUtils.getBarcodeResult(IXconnect ixConnect
File file
int page
String barcodeConfig

Barcodes formats in the ZXing library

Refer to the official ZXing library documentation for supported barcode formats. The individual
formats are listed in the ZXing class BarcodeFormat. Further information can be found at: http:/
zxing.qgithub.io/zxing/apidocs/.

The following formats are supported:

* Aztec 2D

« CODABAR 1D

* Code 128 1D

* Code 39 1D

* Code 93 1D

* Data Matrix 2D
« EAN-13 1D

http://zxing.github.io/zxing/apidocs/
http://zxing.github.io/zxing/apidocs/
http://zxing.github.io/zxing/apidocs/

Processes and automation

EAN-8 1D

ITF (Interleaved Two of Five) 1D
MaxiCode 2D

PDF417

QR Code 2D

RSS 14

RSS EXPANDED

UPC-A 1D

UPC-E 1D

UPC/EAN extension

E Processes and automation

Creating barcodes with the ZXing library

Creating barcodes on a document page takes place via the writeBarcode method. In this method,
the target file, the barcode text, the size of the barcode, and the barcode configuration are

transferred as parameters.

ELOasUtils.writeBarcode(IXconnect ixConnect, File targetFile
String barcodeText, int width, int height
String barcodeConfig

Sample configuration

String barcodeConfig = "AZTEC LAYERS:13|CHARACTER SET:UTF8|
DATA MATRIX_ SHAPE:FORCE_RECTANGLE |
ERROR_CORRECTION:M|MARGIN:20|PDF417 COMPACT: TRUE|
PDF417 COMPACTION:NUMERIC|PDF417 DIMENSIONS:5,10,5,10"

A call to a static ELOas method in an ELOas rule looks like this:

var result = Packages.de.elo.mover.utils.ELOAsUtils
getBarcode (emConnect,barcodeFile, 1, barcodeConfig

This enables you to use barcode information in ELO Automation Services.

m Processes and automation

Debugger

ELOas debugger

Searching for errors in an extensive ruleset can require a great deal of time and effort. The
JavaScript must be adjusted for each pass. To do so, you must check out the document, edit it,
check it back in, and then click Reload. Further, the use of the Rhino debugger under Apache
Tomcat is problematic in a Windows 7 environment. You can save yourself at least this and the
checkout/check-in process by using the ELOas debugger.

Information

For more information on the ELOas debugger, refer to the "ELO Automation Services
Debugger (Java FX)" documentation.

Opening the program

The ELOas debugger 20 comes with Open]DK 13. The debugger uses the supplied Java Runtime
Environment and is started via the file "ELOAsDebug.bat" with the following content:

.\jdk-13.0.2\bin\java.exe --module-path=.\1lib\modules
--add-modules javafx.controls,javafx.base, javafx.graphics,

javafx.web, javafx.swing
n *; \‘le*u

de.elo.mover.eloasdbg.javafx.StartEloAs

Processes and automation

1=
[oetei |

| Verwalten C:\Users\Vladov\Desktop\ELOAsDebugger 20.... - O X
Datei Start Freigeben Ansicht Anwendungstools v 0
™ > ELOAsDebugger 20.00.000 Build 005 v O "ELOAsDebugger 20.00.000B... 0
A
Name Anderungsdatum Typ GroBe
3+ Schnellzugriff
jdk-13.0.2 17.03.2020 09:14 Dateiordner
[l Desktop »))
lib 17.03.2020 11:38 Dateiordner
¥ Downloads # [£) ELOasDBG jar 17.03.2020 10:58 Executable Jar File 2.812KB
| Dokumente # ELOAsDebug.bat 17.03.2020 11:41 Windows-Batchda... 1KB
[=] Bilder # 5 libdoctdt 11.03.2020 09:17 Textdokument 5KB
_install.myelo.net D Liesmich Open JDK 13.txt 07.02.2020 11:57 Textdokument 1KB
ELOAS 20.00.000 Bu 5] Liesmich.bt 25.03.2019 11:23 Textdokument 2KB
07.02.2020 12:02
ELOAsDebugger 20. E] Readme Open JDK 13.bxt 07.02.2020 12:02 Textdokument 1KB
ibd =] Readme.txt 25.03.2019 11:24 Textdokument 2KB
ibdoc
B Versionhistory.html 16.03.2020 12:37 Firefox HTML Doc... 43 KB
[Dieser PC B Versionsgeschichte.html 16.03.2020 12:34 Firefox HTML Doc... 47KB
¥ Netzwerk
11 Elemente 1 Element ausgewshlt (210 Bytes) Bzl =]

Fig.: 'ELOAsDebug.bat’ file in the Windows file system

Configuration

Click the Config button. This will take you to the configuration dialog box.

Processes and automation

(Configuration of profile 6 uﬂ‘i—hj

Profile name

Name ELO12

Indexserver connection

ELO user ELO Service
Password see
IX-URL http://srvtdev-elo12-1:9090/ix-elo120/ix

Automation Services configuration

Root folder ARCPATH:TAdministrationTELOas Base

Local client configuration

Checkout dir |
Tiles dir |
Report file [}
Log file C\temp\ELOas12Llog.txt]
Show output in LogFactor5
Global direct rule parameters
User ID -1
Parameter 1 345 Parameter 6
Parameter 2 {"newObjld": "51397} Parameter 7
Parameter 3 Parameter 8
Parameter 4 Parameter 9
Parameter 5 Parameter 10
oK Cancel

Fig.: Debugger configuration

The title of the dialog box displays the ID of the ELOas debugger profile being edited. The user
password is hidden in the user password text field.

Name: The profile name may contain a maximum of 15 characters.
ELO user: The name of the ELO user.
Password: The password for the ELO Indexserver connection.

IX-URL: The URL of the ELO Indexserver. The text field contains a green background when the ELO
Indexserver is available at the specified URL.

Root folder: The path where the ELOas configuration is saved.

Checkout dir: Clicking the button next to the Checkout dir field allows you to select the ELO Java
Client checkout directory.

m Processes and automation

Tiles dir: Clicking the button next to Tiles dir allows you to select the monitored directory for the
referenced ELO Dropzone tiles.

Report file: Clicking the button next to the Report file field allows you to select an ELOas debugger
report file.

Log file: Clicking the button next to the Log file field allows you to select the log file.

Global direct rule parameters: Here, you can configure the global parameters for direct ELOas
rules. You can edit the user ID and ten parameters.

The profile configuration dialog box has a scroll bar that is shown when the dialog box is reduced
beyond a certain size.

Click the OK button to save your changes in the system registry. The settings for the current ELOas
debugger profile (ID: 1) are saved to the following location in the system registry:

"HKEY_CURRENT_USER\Software\JavaSoft\Prefs\elo digital office\eloas.1".

Click Cancel to discard your changes and close the dialog box. You can also press the ESC key to
close the ELOas debugger profile configuration dialog box. The dialog box has a minimum size
setting. When you enlarge the dialog box, the individual components of the dialog box are
enlarged proportionally. This allows you to display long profile inputs.

Editing a ruleset

After starting, all rulesets for the current configuration are loaded automatically. However, they are
not run right away, allowing you to enter breakpoints to the JavaScript code.

 ELO Automation Services D
o —

» Run M Stop Profile: | ELO12 ~ || @ config || @ Overview | | File Edit Debug Window ELO (Bl[alv]
. . c Break Step Into | Step Ove Step Out 501520
Available rules in profile "ELO12": @ ‘ ! ‘
AutomatischVerschieben [sol.common.as.SendMail oo X
ExtractCSV 1 //Import the IndexServer API classes. o
Neuer Ruleset #0xffc der nicht mehr 2 importPackage (Packages.de.elo.ix.client); D
R 3 importPackage (Packages.de.elo.mover.main);
mgel 4 importPackage (Packages.de.elo.mover.main.pdf) ;
sol.common.as.SendMail S importPackage (Packages.de.elo.mover.main. tiff);
N sol.common.as.WfController d importPackage (Packages.de.glol. mover.main.utils);
7 importPackage (Packages.de.elo.mover.utils) ;
I fr.UpdateExch; Rats
solcommon_fxUpcatetxchangenates 3 importPackage (Packages. java.lang) ;
solinvoiceInvoiceXmllmporter 9 importPackage (Packages. java. sql) ;
é’ BarcodeRecognition 10 importPackage (Packages.java.io);
d’ BLP Test 11 importPackage (Packages.org. apache. commons.io) ;
. 12 importPackage (Packages. javax.mail) ;
&’ BLP Wait Test 13 importPackage (Packages. javax.mail.internet);
é’ MYRULE 14 importPackage (Packages.java.util);
d} sol.common.as.OfficeConverter 15 importPackage (Packages.org.apache. commons. lang) ;
d’ ! SendMail 16 importPackage (Packages.org. apache. commons.httpclient) ;
sel.common.as.enaivial 17 importPackage (Packages.orqg. apache. commons.httpeclient.methods) ;
&, sol.common.CreateSignedPdf 18 importPackage (Packages.org.json);
19
Process status: -- e
] »
Context: l [" Expression ‘ Value
Name Value
this | Locals Watch | Evaluate
Thread:
w) elo120 // Administration // Business Solutions // common // ELOas Base // Direct // sol.common.as.SendMail Close

Processes and automation

Fig.: ELOas Automation Services, edit ruleset

If you have multiple rulesets, please ensure that you have selected the correct one in the Rhino
debugger window under Window. Now you can set breakpoints wherever you wish and start the

ruleset.

Start a ruleset by clicking the corresponding ruleset entry in the list and then clicking Run. Please
note that the ruleset is now activated, but will naturally still be subject to the interval control. If
you have set the ruleset start for midnight, it will also only become active in the debugger at this
point in time. For debugging purposes, the setting "1M" - i.e. once a minute - is a good setting for
recurring rulesets, and "10H" - i.e. every 10 hours - good for rulesets that should be run once.

If you want to edit a ruleset or a JavaScript file, then you can check them out or call the already
checked out file directly in a text editor of your choice. Perform your desired changes and then
save the data. As long as the editor does not open the file exclusively (which is somewhat
uncommon for text editors), you will not need to close the editor as well. Simply click Run in the
debugger again. The ruleset will now be automatically reloaded and restarted from the repository
and the checkout directory. A new log file is created so you do not have to deal with old logs.

ﬁ Processes and automation

Debugger (Java FX)

Opening the program

The ELOas debugger starts via the file EloAsDebug.exe and requires a computer with JRE 1.7 or
higher installed.

You can also run the ELOas debugger via the command line using the following command:

"C:\Program Files\Java\jrel.8.0 152\bin\javaw.exe"
" *;lib*" de.elo.mover.eloasdbg.javafx.StartELloAs

Use with Open)DK

The ELOas debugger can also be used with Open]DK. The ELOas debugger 20 comes as a complete
package with OpenJDK 13. Java no longer has to be installed separately.

In the program directory of the ELOas debugger, click the file "ELOasDebug.bat".
Displaying the debugger on high-resolution screens

For the Rhino debugger embedded in the ELOas debugger to be displayed properly with a
horizontal resolution of 4000 pixels (4K) on Windows 10 (from version 1703), you have to configure
the option for scaling the application. Follow the steps below to configure this option:

1. On the file system, right-click the file "EloAsDebug.exe" and select the "Properties" menu
item.

2. Open the tab "Compatibility".

3. Click the "Change high DPI settings" button.

4. Check the box next to "Overwrite behavior for high DPI scaling".
5. Select "System" from the drop-down menu.

6. Click OK to save your changes.

ELOas debugger 20 includes the Rhino scripting engine "rhino-1.7.12.jar".

Processes and automation

User interface

The ELOas debugger user interface looks like this:

r
7 ELO Automation Services Debugger o | B)
P Run M Stop Profile: | ELO12 ~ || {5} Config || @ Overview File Edit Debug Window P~
- . = Break tep Into | Step Over tep Out
Available rules in profile "ELO12": @ ‘ ‘ ‘
sol.common.as.SendMail i [sol.common.as.officeConverter oo X
sol.common.as.WfController 1 //Import the IndexServer API classes. =
sol.common_fx.UpdateExchangeRates 2 importPackage (Packages.de.elo.ix.client);]
3 impo . in) *
solinvoiceInvoiceXmimporter importPackage (Packages.de.elo.mover.main) ;
- 4 importPackage (Packages.de.elo.mover.main.pdf) ;
&, BarcodeRecognition 5 importPackage (Packages.de.elo.mover.main. tiff);
&’ BLP Test 6 importPackage (Packages.de.elo.mover.main.utils) ;
&1 BLP Wait Test 7 importPackage (Packages.de.elo.mover.utils);
Gl importPackage (Packages. java. lang) ;
B MYRULE A) o
importPackage (Packages.java.sql);
Pt o smporceackage (Packages. Java.io)
&1 sol.common.as.SendMail 11 importPackage (Packages.org.apache. commons.io);
) 12 tPackage (Packages. . mail) ;
d’ sol.common.CreateSignedPdf importrackage(Packages.javax.mai.)
13 importPackage (Packages.javax.mail. internet);
d’ sol.common.Export 14 importPackage (Packages.java.util);
é’ solinvoice_zugferd.extractZugferdData 15 importPackage (Packages.org.apache. commons. lang) ;
&1 TEST 16 importPackage (Packages.org. apache. commons.httpelient) ;
17 importPackage (Packages.orqg. apache. commons.httpeclient.methods) ;
(P TestConvertFoToPdf 18 importPackage (Packages.org.json) ;
19
Process status:
20 var EM VERSION _NO = "12.00.000 Build 00g€"; =
(])
Context: | [~] Expression | Value
Name Value
this | Locals Watch | Evaluate
Thread:
) elo120 // Administration // Business Solutions // common // ELOas Base // Direct // sol.common.as.OfficeConverter Close
L

Fig.: ELOas debugger user interface

When you start the ELOas debugger, the first rule is selected by default. The rule contents are

shown on the right-hand side.

Information

The ELOas debugger is only available in English.

The size and position of the individual program dialog boxes are saved in the registry and then
restored the next time the program starts. The dimensions are saved for the main ELOas debugger
window, the LogFactor5 window, the profiles overview dialog box, the profile and parameter
configuration windows, and the About this program dialog box.

The column arrangement in the LogFactor5 dialog box is also saved to the registry and restored

the next time the program starts.

The ELOas debugger contains a split bar between the list of existing rulesets and the status area.
The split bar position is saved to the registry and restored the next time the program starts.

107 Processes and automation

Searching rule contents

The rule contents are shown on the right-hand side of the ELOas debugger interface. You can
search the contents using the search field located above this space.

P Run M Stop Profile: | ELO12 ~ || @iConfig || @ Overview | | File Edit Debug Window ELO A~
. . Go Step Into | Step Over [Step Out 501520
Available rules in profile "ELO12": @ ‘ Biedk B g £ J
AutomatischVerschieben - [sol.common.as.SendMail oo X
ExtractCSV 1 //Import the IndexServer API classes. ‘j
Neuer Ruleset #0xffc der nicht mehr 2 importPackage (Packages.de.elo.ix.client);
. 3 importPackage (Packages.de.elo.mover.main) ;
nigel 4 importPackage (Packages.de.elo.mover.main.pdf) ;
I sol.common.as.SendMail | & importPackage (Packages.de.elo.mover.main. tiff) ;
U sol.common.as.WfController 6 importPackage (Packages.de.glol mover.main.utils) ;
| 7 importPackage (Packages.de.elo.mover.utils);
. h) '
sol.common frUpdateExchangeRates Gl importPackage (Packages. java.lang) ;
solinvoiceInvoiceXmllmporter 9 importPackage (Packages.java. sql) ;
8 BarcodeRecognition 10 importPackage (Packages.java.io);
é’ BLP Test 11 importPackage (Packages.org.apache. commons.io) ;
) 12 importPackage (Packages.javax.mail) ;
(P BLP Wait Test 13 importPackage (Packages. javax.mail.internet) ;
d" MYRULE 14 importPackage (Packages. java.util) ;
é} sol.common.as.OfficeConverter 15 importPackage (Packages.org. apache. commons. lang) ;
. 16 importPackage (Packages.org. apache. commons.httpclient);
d’ sol.common.as.SendMail
17 importPackage (Packages.org. apache. commons.httpclient.methods) ;
8 sol.common.CreateSignedPdf 3 18 importPackage (Packages.org. json) ;
19
Process status: .- M
] »
Context: l [V' Expression ‘ Value
Name Value
this | Locals Watch | Evaluate
Thread:
w I elo120 // Administration // Business Solutions // common // ELOas Base // Direct // sol.common.as.SendMail Close

Fig.: Searching the rule contents

After entering your search term to the search field, it will be highlighted in the rule contents if
found.

Additional options are available in the search field context menu.

—] [copy SU9-C
Step Over | | [Paste Strg-V

b5y Use last entry F9 ol w S

AL classes X Delete Laschen

.elo.ix.cl

.elo.mover.main) :
Fig.: Search field context menu

Copy copies the text to the clipboard and Paste inserts your text from the clipboard. Clicking Use
last entry enters the last search term to the search field. Clicking Delete removes the search term.

Processes and automation

Status reports

The main window of the ELOas debugger features a multi-line text field for background process
status reports. This field cannot be edited, but its contents can be copied to the clipboard.

Program information

About this program

ELO Automation Services Debugger

Program version 20.00.000 Build 006
Java-Version 13.0.2+8 - 64 bit
Copyright @ 2020 ELO Digital Office GmbH

Show debugger shortcuts

Show ELOas documentation

28 kLo 20

Close

Fig.: 'About this program’' dialog box

The lower left of the dialog box contains a button for program information. Clicking the button
opens the 'About this program' dialog box, where you will find the program version and Java
version. You will also find links to the keyboard shortcuts for the ELOas debugger and ELOas

documentation. Click Close to exit this dialog box.

Processes and automation

Starting an ELOas rule

Click Run to begin debugging an ELOas rule. The debug process is run in the embedded Rhino
debugger. If the option for LF5 output is enabled in the current ELOas debugger profile, this
program also starts in a separate window. This window displays the ELOas debugger outputs. The
different log levels can be marked in a suitable color, as needed. Click Stop to stop debugging an
ELOas rule. The buttons for starting and stopping a rule are always active in the current version of
the ELOas debugger.

If you click Run without selecting an ELOas rule first, the following warning appears:

7

A

Start debugging

)

0 No ruleset selected
Select one ruleset and execute the action again.

CK

Fig.: Error message when starting debugging without selecting an ELOas rule

m Processes and automation

Profiles

Using ELOas debugger profiles

The upper right area of the main ELOas debugger window contains a drop-down menu with the
ELOas debugger profiles. This drop-down menu contains 10 profiles. Each profile can be uniquely
identified based on the profile name.

When you select a profile, the relevant graphic dialog components are refreshed. The list of
existing ELOas rules is also refreshed when you change profiles. This list displays the rules from
the ELOas debugger profile currently in use. Double-click an ELOas rule to start the debug process
for that rule.

r

¢ ELO Automation Services Debugger

P> Run B Stop Profile: | ELO12 ~ {6} Config © Overview

Available rules in profile "ELO12™: ©
sol.invoice.InvoiceXmllmporter
d’ BarcodeRecegnition
(B BLP Test
A BLP Wait Test
A MYRULE
d’ sol.common.as.OfficeConverter
| TsolommonassenaM T
A sol.common.CreateSig P> Run i
/A sol.common.Export M Stop

(A solinvoice_zugferd.ext (A Edit param Ctrl+E
A TEST &) Open rule Alt+O
d’ TestConvertFoToPdf =» Goto rule Alt+G

/A TestConvertFoToPdf2

d’ TestConvertToPdf
vy O rt fil Ctrl+R
d’ TestGetBarcode [53] Open report file o :

@ Reload rules Ctrl+Alt+R

B‘. Open log file Ctrl+L

Process status:
E® Show shortcuts F12

Fig.: Context menu in the ELOas debugger

Right-click a rule to open the list context menu. The following actions are available in the context
menu:

Run: Start the debug process for the selected ELOas rule.

H Processes and automation

Stop: Stop the debug process.

Edit param: Modify the rule parameters. The specific parameters for the direct rule are applied
instead of the global rule.

Open rule: Open the rule as a text file.

Goto rule: Open the filing location of the rule in ELO.

Open log file: Open the configured ELOas debugger log file.

Open report file: Open the configured ELOas debugger report file.
Reload rules: Reload the existing ELOas rules.

Show shortcuts: Shows the keyboard shortcuts in the ELOas debugger.

The list of available rulesets also shows the direct rulesets. The individual rulesets are
distinguished from one another based on their icon. The type icon of a ruleset contains a
corresponding description text.

Profile overview

r hl

Debug profiles overview o | B ||

/
a

Available debug profiles:

PROFILE-ID 0

b Localarchive

. http://localhost:9090/ix-LocalArchive/ix
ARCPATH:JJAdministrationf]ELOas Base
C:\Users\Vladov\AppData\Roaming\ELO Digital Office\Lokales Archivi0\checkout

REPORT FILE C:ftemp/asdebug10report.txt
S FILE C:ftemp/asdebug10.txt
SHOWLF5OUTPUT YES

USER ID 11
PARAM 7772
22222
33333
PARAM4 44444
55555
PARAMS 66
PARAMT 77
PARAMS 88
PARAME {"objlds"["(C55874C0-9D99-4065-D848-
209BB70078D1)"],"language":"EN" "solutionNameForAsConfig":"invoice","ruleName":"sol.invoice_datev.Export"}
PARAMIO 121212121212
PROFILE-ID 1

Save as HTML Close

m Processes and automation

Fig.: ELOas debugger profile overview

Click Overview to open the overview of existing ELOas debugger profiles. The existing profiles are
shown on an HTML page. The overview shows the most important properties of a profile. Save the
profile overview to the local file system as an HTML file by clicking Save as HTML.

Information on the selected profile

2 - —
|| ELO Automation Services Debugger g ML L L EENEERT

| |
I P Run Stop Profile: | PUBSEC ~ {% Config @ Overview

Available rules in profile "PUBSEC™": ©@ '

sol.common.as.WfController NAME: PUBSEC

IX-URL: http://srvpdevbs0lvm:8020/x-pubsec/ix

ROOT FOLDER: ARCPATH:TAdministrationTELOas Base
d’ sol.common.as.OfficeConverter BRERER e gs)ie

(A sol.common.as.SendMail REPORT FILE: |
) LOG FILE: C:\temp'\eloasdebug.log
(P solpubsec.as.actions.CreateReco LFS OUTPUT: YES

d’ sol.pubsec.as.ImportFilingPlan » l

Process status:

—

E Close

Fig.: Information on the selected profile

The main dialog box of the ELOas debugger contains an info icon that you can click to see the most
important data on the currently selected ELOas debugger profile.

Editing profiles

Edit the active ELOas debugger profile by clicking Config.

Processes and automation

(Configuration of profile 6 uﬂ‘i—hj

Profile name

Name ELO12

Indexserver connection

ELO user ELO Service
Password see
IX-URL http://srvtdev-elo12-1:9090/ix-elo120/ix

Automation Services configuration

Root folder ARCPATH:TAdministrationTELOas Base

Local client configuration

Checkout dir |
Tiles dir |
Report file [}
Log file C\temp\ELOas12Llog.txt]
Show output in LogFactor5
Global direct rule parameters
User ID -1
Parameter 1 345 Parameter 6
Parameter 2 {"newObjld": "51397} Parameter 7
Parameter 3 Parameter 8
Parameter 4 Parameter 9
Parameter 5 Parameter 10
oK Cancel

Fig.: Profile configuration dialog box

The title of the dialog box displays the ID of the ELOas debugger profile being edited. The user
password is hidden in the user password text field.

Name: The profile name may contain a maximum of 15 characters.
ELO user: The name of the ELO user.
Password: The password for the ELO Indexserver connection.

IX-URL: The URL of the ELO Indexserver. The text field contains a green background when the ELO
Indexserver is available at the specified URL.

Root folder: The path where the ELOas configuration is saved.

Checkout dir: Clicking the button next to the Checkout dir field allows you to select the ELO Java
Client checkout directory.

m Processes and automation

Tiles dir: Clicking the button next to Tiles dir allows you to select the monitored directory for the
referenced ELO Dropzone tiles.

Report file: Clicking the button next to the Report file field allows you to select an ELOas debugger
report file.

Log file: Clicking the button next to the Log file field allows you to select the log file.

Global direct rule parameters: Here, you can configure the global parameters for direct ELOas
rules. You can edit the user ID and ten parameters.

The profile configuration dialog box has a scroll bar that is shown when the dialog box is reduced
beyond a certain size.

Click the OK button to save your changes in the system registry. The settings for the current ELOas
debugger profile (ID: 1) are saved to the following location in the system registry:

"HKEY CURRENTUSER\Software\JavaSoft\Prefs\elo digital office\eloas.1".

Click Cancel to discard your changes and close the dialog box. You can also press the ESC key to
close the ELOas debugger profile configuration dialog box. The dialog box has a minimum size
setting. When you enlarge the dialog box, the individual components of the dialog box are
enlarged proportionally. This allows you to display long profile inputs.

Editing direct rules

[Edit specific parameter of rule "sol.common.as.SendMail” [| E I&J‘
Edit the specific parameter ©
UserID [E
Parameter 1 Parameter 6
Parameter 2 Parameter 7
Parameter 3 Parameter 8
Parameter 4 Parameter 9
Parameter 5 Parameter 10

OK Cancel

A

Fig.: Dialog box for editing direct rules

E Processes and automation

In this dialog box, you can edit the specific parameters of a direct rule. You can reach this dialog
box via the context menu by selecting a rule in the list of available rules. In this dialog box, you
can edit the user ID and the ten available parameters.

Changing profiles

If you have edited the profile and want to switch to another profile, you will have to restart the
ELOas debugger.

a4 B
7 Profile changed l_J&

o Automatic restart required
Having changed the profile requires a restart of the
program. This takes place automatically and may take
several seconds.

OK

Fig.: Message dialog box indicating automatic restart after changing profiles

E Processes and automation

Keyboard shortcuts

Individual ELOas debugger functions are also assigned keyboard shortcuts.
F1 shows the About this program dialog box.

F2 opens the profile overview.

F3 jumps to the next search result.

SHIFT + F3 jumps to the previous search result.

F9 uses the last entry.

F12 opens the overview of keyboard shortcuts.

CTRL+P shows the profile configuration dialog box.

CTRL+0 opens the profiles overview.

CTRL+E opens the dialog box for editing parameters.

CTRL + I shows the program version of the ELOas debugger.
CTRL+S brings the script contents into the foreground.

CTRL + G opens the filter function.

CTRL+L opens the log file.

CTRL+R opens the configured report file.

CTRL + F brings the "LogFactor5" window to the foreground.
CTRL + J opens the dialog box for selecting page jumps.
CTRL + W evaluates the selected text.

CTRL + ALT + L opens the "Go to line" dialog box. Enter the lines you want to navigate to here.
CTRL + ALT + Rreloads the rules.

ALT + E opens the configured report file.

ALT + 0 opens the selected rule.

ALT + G jumps to the location where the rule is stored in ELO.

117 Processes and automation

Java libraries

The following chapter contains a list of Java libraries included with the ELOas debugger.

No. Library Description

Library for accessing the ELO Indexserver (Indexserver

1. EloixClient.jar
J interface)

2. eloserverutils.jar General ELO server utility classes

Utility methods for frequent string operations, serialization, and

3. commons-lang-2.6.jar
g) object reflection

Utility methods for frequent string operations, serialization, and

4., commons-lang3-3.9.jar
9) object reflection

aspose-cad-19.7.jar Library for creating and managing AutoCAD documents

6. aspose-cells-19.8.jar Library for creating and managing Microsoft Excel documents
aspose-diagram-19.8-

7. P g Library for creating and managing Microsoft Visio documents

jdk16.jar
aspose-email-19.8-jdk16.jar Library for reading e-mail messages
aspose-words-19.9-jdk17.jar Library for creating and managing Microsoft Word documents

Library for creating and managing Microsoft PowerPoint
10. aspose-slides-19.9-jdk16.jar y 9 ging

documents
11. aspose.pdf-19.8.jar Library for creating and editing PDF files
12. aspose-barcode-19.8.jar Library for creating and reading barcodes
13. bcprov-jdkl50n-1.52.jar Library for accessing encrypted documents
14. httpclient-4.4.jar Library for sending HTTP requests
15. httpcore-4.4.jar Library for sending HTTP requests
16. jai_codec.jar Library for image processing in Java
17. jai_core.jar Library with the main functions for image processing in Java
18. jai_imageio patch.jar Library for image processing in Java
19. log4j-1.2.17.jar Library for log outputs in Java applications
20. slf4j-log4jl2-1.7.25.jar Library for log outputs
21. slfdj-api-1.7.25.jar SLF4] logger interface
22. jcl-over-siIf4j-1.7.25.jar Library for migration to the SLF4) logger
23. rhino-1.7.12.jar Library for running JavaScript scripts
24. commons-io-2.7.jar Library with utility methods for frequent file operations
25. bcpkix-jdk150n-1.59.jar Library for editing encrypted Microsoft office documents
26. bcmail-jdk150n-1.59.jar Library for editing encrypted e-mails
27. bcprov-jdkl50n-1.59.jar Library for editing encrypted Microsoft office documents
28. mlibwrapper_jai.jar Additional library for image processing in Java

29. jna.jar Library for accessing system resources

Processes and automation

No.
30.
31.

32.

33.
34.
35.
36.
37.

38.

39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.

52.

53.
54.
55.

56.

57.

58.

59.

60.
61.

Library
platform.jar

forms-1.1.0.jar

commons-codec-1.9.jar

pdfbox-2.0.18.jar
fontbox-2.0.18.jar
xmpbox-2.0.18.jar
javax.mail-1.6.2.jar
activation-1.1.1.jar

metadata-
extractor-2.13.0.jar

xmpcore-6.1.10.jar
db2jccd.jar
json-20190722.jar
gson-2.8.6.jar
sqljdbc4.jar
ojdbcé6.jar
imgscalr-lib-4.2.jar
poi-4.1.0.jar

poi-scratchpad-4.1.0.jar

poi-ooxml-4.1.0.jar

poi-ooxml-schemas-4.1.0.jar

xmlbeans-3.0.1.jar

commons-compress-1.18.jar

commons-
collections4-4.3.jar

core-3.4.0.jar
javase-3.4.0.jar
fop.jar
xmlgraphics-
commons-2.3.jar
batik-all-1.10.jar
avalon-framework-
impl-4.3.1.jar
avalon-framework-
api-4.3.1.jar
serializer-2.7.2.jar

xalan-2.7.2.jar

Description
Additional library for accessing system resources
Library for creating layouts for graphic components

Library with general encoder/decoder classes for base 64, hex,
and URLs

Library for accessing PDF files

Library for PDF file fonts

Additional library for working with PDF documents
Library for sending e-mails

Utility library for sending e-mails
Library for reading metadata from image files

Library for editing, printing, and converting documents
Library for the DB2 database driver

Library for creating JSON strings

Additional library for creating JSON strings

Library for the Microsoft SQL Server database driver.
Library for the Oracle database driver.

Library for image scaling.

Library for accessing Microsoft Office documents
Additional library for accessing Microsoft Office documents
Additional library for accessing Microsoft Office documents
Additional library for accessing Microsoft Office documents
Additional library for accessing Microsoft Office documents

Utility library for accessing Microsoft Office documents
Utility library for accessing Microsoft Office documents

Library for barcode recognition
Another library for barcode recognition
Library for converting XML files to PDF

Library for editing XML files
Library for applications that use images in SVG format

Library for creating and configuring components

Interface to the library for creating and configuring components

Library for serialization

Library for converting XML documents to HTML

Processes and automation

No.
62.
63.
64.
65.
66.

67.

68.
69.
70.

Library
xercesimpl-2.9.1.jar
xml-apis-1.3.04.jar
xml-apis-ext-1.3.04.jar
jsch-0.1.55.jar

jacob.jar
jacob-1.19-Lib.jar

postgresqgljdbc4.jar
quartz-2.3.0.jar
quartz-jobs-2.3.0.jar

Description

Library for an XML parser

Java API for XML operations

Library for a DOM, SAX, and JAXP interface

Library for the Java implementation of SSH2

Library for accessing COM objects from a Java application

Library with the Jacob DLLs for accessing COM objects from a
Java application

JDBC driver for the PostgreSQL database
Library for running processes at specific times

Additional library for running processes at specific times

Processes and automation

ELOas debugger on Linux

The ELOas debugger 20 also comes as a complete package that is copied to the necessary position
in the file system. The debugger is run from the "ELOasDebug.sh" file.

g | & = | Compressed Folder Tools ~ ELOAsDebugger_20.00.000_Build006_Linux.zip - O X
Home Share View Extract (2]
A ¥ « ELOAsDebu... > ELOAsDebugger_20.00.000_Build006_Linux.zip » v O Search ELOAsDebugger_20.00... 0O
Name Type Compressed size Password .
Quick access jdk-13.0.2 File folder
[Desktop » lib File folder
Jy Downloads » d ELOas Debugger 20 Licenses.txt Text Document 64KB No
EJ Documents * | £ ELOasDBG.jar Executable Jar File 1,063KB No
& Pictures + L] ELOAsDebug.sh Shell Script 1KB No
b Musi d libdoc.txt Text Document 2KB No
usic -
) |=] Liesmich Open JDK 13.t¢t Text Document 1KB No
m e lj Liesmich.txt Text Document 1KB No
@ OneDrive d Readme Open JDK 13.txt Text Document 1KB No
a Readme.txt Text Document 1KB No
B This PC B Versionhistory.html Firefox HTML Document 10KB No
= Network B Versionsgeschichte.html Firefox HTML Document 10KB No
< >
12items 1item selected 555 bytes =

Fig.: ELOas debugger for Linux package

H Processes and automation

Other topics

Manual installation of ELOas

This document describes the manual installation of ELO Automation Services (ELOas). Under
ELOprofessional, the module is created automatically by with the server installation. When
installing later, or in a distributed environment, however, it must be installed manually.

Like almost all modules in the ELOenterprise server line, ELOas is programmed as a servlet and
requires a Java Runtime Environment and an application server to run, such as Tomcat 9.0. Java
version 11 or higher is required.

The configuration is stored in the XML file config.xml in the default ELO configuration directory. This
allows updates to be performed without difficulty while retaining the original configuration. The
default language for ELOas is automatically set during the ELO Server server setup based on the
installation language selected and entered in the file config.xml in the language parameter. In the
following example, it is "en" for English:

entry key="language">en</entry

The execution instructions of ELOas with the rulesets, translation lists, and basic scripts are located
in a folder in the repository. You need to define the connection to the ELO Indexserver and this
base folder in the configuration.

Required files

You will find the following files in the ZIP archive for the manual installation:

ELOas.war

ELOas.xml

logback.xml

config.xml

ELO Automation Services Konfiguration.zip
Installation.pdf

JavaScriptCode.pdf

Regeldefinition.pdf

Preparing for installation

Running ELOas requires the standard ELOas libraries in the "JavaScript" folder. Newer ELOas
versions automatically install the standard ELOas libraries on program start-up if they are not
already installed. The latest standard ELOas libraries can be downloaded and installed at any time
from the official scripting site:

http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html

Processes and automation

Favoriten Ansicht Ausgabe Verwalten LTI Sjadnsiiaiog a

<« (j - ‘H— Mehrfachverschlagwortung Zuletzt verwendet
Ordner
Archiv « ELOasBase Verschlagwortung ‘ Formular Volltext ‘ Feed ‘ Webanwendung (=
1 . ELOasBase Typ Kurzbezeichnung Datum Abgelegtv Version Verschlagy ~ Verlinkun Ablagedatum Bearbeiter ~ Komme
> [l Backup Backup Administrator Ordner 19.00.2016,08:42
> |els Direct
Direct ELO Service Ordner 19.04.2016,16:35
> Java
Java ELO Service Ordner 19.04.2016,16:35
> |als| JavaScript
> Misc JavaScript ELO Service Ordner 10.12.2019,11:20
[optionalJsLibs Misc Administrator Ordner 29.08.2019, 09:40
> [Rules
[[] OptionalJsLibs ELO Service Ordner 19.04.2016,16:35
> Tiles
EE Rules ELO Service Ordner 19.04.2016,16:35
[
Translate
[ELOasBase 1 B Tiles ELO Service Ordner 19.10.2017,15:47
[ELOasBase 2 [I] Translate ELO Service Ordner 19.04.2016,16:35
‘ » - ‘« , -
i=2 EOUAIE Suche Aufgaben 12 Postbox 37 ToDo
e 5

9 Eintrage Lokales Archiv // Administration // ELOas Base

Fig.: Rules folder in ELO

The Rules child folder contains the user-defined rulesets. A sample has been placed here that can
be used as a template for custom solutions.

The files ELOas.war and ELOas.xml should be renamed according to the repository name and the
ELO standard convention for service names, into as-<Name of repository>.war and as-<Name of
repository>.xml.

* Thus, for the repository "elo20", they should be renamed "as-elo20.war" and "as-elo20.xml".
Pay attention to capitalization here, as this is important for later access. Both of these files
are copied to a temporary directory on the computer running the application server (such as
C:\TEMP).

In the ELOas.xml file, the path must be entered for the configuration directory of your ELO
environment:

<?xml version='1.0' encoding='UTF-8'?>
<Context path="/as-elo20">
<Environment name="webappconfigdir"

value="G:\ELOprofessional\config\as-elo20"

type="java.lang.String" override="false"/>

</Context>

For the files logback.xml and config.xml, a child directory is created in the ELO configuration
directory for this ELOas configuration, and both of these files are copied there.

E Processes and automation
I M

= | C:\ELOenterprise20\config\as-LocalArchive\ELO-PCVLADOVM-3 - O X
Start Freigeben Ansicht o
&« v I C:\ELOenterprise20\config\as-LocalArchive\ELO-PCVLADOVM- v|d ELO-PCVLADOVM-3" durchs... 0
Name Anderungsdatum Typ GroBe
3 Schnellzugriff)
| | configxml 0.02.2020 11:55 XML-Dokument 1KB

3 Dieser PC | | logbackxml
) 3D-Objekte
&=/ Bilder
[Desktop
5| Dokumente
4 Downloads
D Musik
B Videos
‘aes LoOkaler Datentrager

s Neues D - Win7alt (

012:38 XML-Dokument 1KB

¥ Netzwerk

2 Elemente -

Fig.: ELOas configuration directory

The name of the configuration directory should start with "as-" and then contain the repository
name. Thus, for the repository "elo20", it should have the name "as-elo20". In the logback.xml file,
the path for the output directory must be adjusted for the local installation.

<file>C:/Programs/Tomcat 9.0/logs/as-elo20.log</file>

In the config.xml file, the parameters for Indexserver access must be adjusted:

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>parameters for this web application</comment>

<entry key="url">http://testserver:8080/ix-elo20/ix</entry=>

<entry key="user">Services</entry>

<entry key="password">130-167-2-31-129-121-203-174-234-167-21-87-88-80-78-122</entry>
<entry key="rootguid">(F6C173D7-3F71-4559-91E5-4886139B12CF)</entry>

</properties>

The url key contains the access path to the ELO Indexserver. Once again, pay attention to
capitalization, as the ELO Indexserver will not be found if entered incorrectly.

The user key contains the ELO login name for ELOas on the ELO Indexserver. Normally, you should
create a separate account for additional services. This account should not be used by interactive
users.

m Processes and automation

The password key contains the ELO password. You can make this entry in plain text for testing
purposes. After starting the service, the report will then contain a notice of how the corresponding
encryption will appear. You can then apply this text from the log report to the configuration by
using cut and paste.

The rootguid key contains the GUID of the home folder of ELOas. The default value is the GUID of
the sample folder from the import data set. If you created your own folder for this data, you can
easily get the GUID by running the following script in the ELO Windows Client (GetGuid.vsb file in
the ZIP archive):

Set Elo=CreateObject("ELO.professional"
if Elo.SelectView(0)=1 then
Id=Elo.GetEntryId(-1

if Id>1 then
if Elo.PrepareObjectEx(Id, 0, 0) > 0 then
call Elo.ToClipboard(Elo.0ObjGuid
MsgBox Elo.0bjGuid
end if
end if

end if

This script finds the GUID of the currently selected entry and copies the GUID to the Windows
Clipboard. From there, you can apply it to the configuration by opening it in a text editor and
pressing CTRL-V.

The rootguid key is also used to configure several ELOas instances. You can run up to ten ELOas
instances. For each instance, create an "ELOas Base" folder in the repository under <Name of
repository> // Administration. For each individual "ELOas Base" folder in the config.xml file, create
separate rootguid parameters as in the following example:

entry key="rootguid">(F6C173D7-3F71-4559-91E5-4886139B12CF)</entry
entry key="rootguidl">(D6EF1FOB-ADE4-C3E2-74F9-3658ED55449A)</entry
entry key="rootguid2"=>(2CFDEA54-3DA9-E567-F335-6F3D223C9BAF)</entry

The ELOas rules in the individual "ELOas Base" folders are then executed separately. If you are
running multiple instances, the logs are also written to a log file. The path of the log file is defined
in the configuration file logback.xml.

The tempdir key contains an optional directory for temporarily downloading the text files if the XML
and JavaScript data has been placed in text files instead of the extra text. If tempdir is empty or
does not exist, the extra text version is used; otherwise the text file version is preferred.

entry key="tempdir">C:\Temp\ELOas</entry

E Processes and automation

Please note

When creating a new user for this service, the ELO Indexserver does not respond to the
change immediately. To ensure that it works, you can clear the user cache on the status
page of the ELO Indexserver to force an immediate update.

Deploying the files

In the Application Server, now enter the parameters for the deployment. The context path (which
is not optional, even if it says so in the Tomcat configuration) contains the name of the web
application. The two file paths point to the configuration and program file. Clicking Install will
install the application.

Installieren

Verzeichnis oder WAR Datei auf Server installieren

Kontext Pfad (optional): /as-elo20

Version (fiir parallele
Installationen):

XML Konfigurationsdatei URL: C:\ELOenterprise20\config\as-LocalArchive\ELO-PCVLADOV-3\config.xml

WAR oder Verzeichnis URL: C:\ELOenterprise20\prog\webapps\as.war

Installieren

Fig.: Entering parameters for the deployment

The "ELOas.war" file in the current ELOas version contains a text file named "version.txt". This file
contains extensions for the individual ELOas versions.

Displaying the status page
ELOas has its own status page, which can be reached via the following URL:

http://<SERVERNAME>:9070/as-<NAME OF REPOSITORY>/as?cmd=status

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe |

‘ © @ localhost:9060/ELOas/?cmd=status

L¥ Meistbesucht @ Erste Schritte

! ELO Automation Services status report, Version
20.00.000 Build 005

No active ruleset, pausing

Excecuted Name

0 DatevExportRule

19 FesteWerteKachel

19 Freie Eingabe

2 NotifyWf

19 PLANDATEN_AUTO_VS
19 RegExpExample

1 SendMail

19 TestIsoDate

0 TestSaveTiffAsPdf

19 TileExample

Direct Pool

0 CreateStdAsLibs

0 CreateStdAsLibsEN

0 TestActivateAsposelicense
0 TestAsString

0 TestCallSignature

oo @ W | Q Suchen

Next run

Trigger

2020-01-21 09:54:13.252
2020-01-21 09:54:13.252
2020-01-21 09:55:11.8
2020-01-21 09:54:13.252
2020-01-21 09:54:13.252
2020-01-21 09:54:39.380
2020-01-21 09:54:13.252
Trigger

2020-01-21 09:54:13.252

Trigger
Trigger
Trigger
Trigger
Triggﬂ)

Run
Stop
Stop
Stop
Stop
Stop
Stop
Stop
Stop
Stop
Stop

Direct
Direct
Direct
Direct

Direct

Action
Reload
Reload
Reload
Reload
Reload
Reload
Reload
Reload
Rel
Rel

g

2

7]
[
]

(=N

Reload
Reload
Reload
Re

oad

Processes and automation

@

Status

Idle...
Idle...
Idle...
Idle...
Idle...
Idle...
Idle...

Idle...

1/2

o

—_—

m

Fig.: ELOas status page with active rules

The status page lists all active rulesets together with information about how often they have
already been run and when the next planned run takes place.

If a JavaScript error occurs, it will be displayed on the status page as well, together with the line

number of the error and the program code in this area.

127 Processes and automation

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe S | B S
© Overview (Java Platform SE8) X | IXServicePortlF (ELO IndexServer D- X | & Projects - Dashboard - Gitlab X [ERERO RN CINENTREINN IS/ NI
| © @ localhost:9060/ELOas/?cmd=status e @ % | Q Suchen o =% & =
% Meistbesucht @ Erste Schritte
Direct Pool 1/2
0 CreateStdAsLibs Trigger Direct Reload
0 CreateStdAsLibsEN Trigger Direct Reload
0 TestActivateAsposeLicense Trigger Direct Reload
0 TestAsString Trigger Direct Reload
0 TestCallSignature Trigger Direct Reload
0 TestCanChangePermissions Trigger Direct Reload
0 TestConvertEmIToPdf Trigger Direct Reload
\ 0 TestConvertExcelToPdf Trigger Direct Reload
0 TestConvertOfficeFilesToPdf ~ Trigger Direct Reload
0 TestConvertWordToPdf Trigger Direct Reload
\ 0 TestCreateBarcodeReader2 Trigger Direct Reload -
0 TestDoTransferImport Trigger Direct Reload
0 TestEncodeUrl Trigger Direct Reload
0 TestFormatObjKeyData2 Trigger Direct Reload
0 TestFreezeForm Trigger Direct Reload
0 TestGetBarcode Trigger Direct Reload M
0 TestGetCode128 Trigger Direct Reload
0 TestGetDefaultResolution Trigger Direct Reload
0 TestGetNotes Trigger Direct Reload
0 TestGetObjKeys Trigger Direct Reload
0 TestGetQrCode Trigger Direct Reload
0 TestGetSubject Trigger Direct Reload
0 TestGetWordBookmarks Trigger Direct Reload il

Fig.: Applying changes with 'Reload’

Changes to rules or enclosure scripts in the repository can be applied by clicking Reload without
restarting the server.

Processes and automation

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

© Overview (Java Platform SE8) X IXServicePortlF (ELO IndexServer ' X & Projects - Dashboard - GitLab X

© @ localhost:9060/ELOas/actions/?cmd=reload e & 7| | Q Suchen ® % & (O}

L¥ Meistbesucht @ Erste Schritte

ELO Automation Services reload report

@ ELO Automation Services 200 X

Number Name Interval
1 DatevExportRule OH
2 FesteWerteKachel iM
3 Freie Eingabe iM
4 NotifyWf 10M
5 PLANDATEN_AUTO_VS 1M
6 RegExpExample iM
7 SendMail iM
8 TestIsoDate M
9 TestSaveTiffAsPdf OH
10 TileExample iM

Back to Status Page

Fig.: ELO Automation Services reload report
Clicking Back to Status Page returns to the normal status display.

On the Insert tab, the catalogs contain elements that should be coordinated with the general
document layout. With the help of these catalogs, you can insert tables, headers, footers, lists,
cover sheets, and miscellaneous other document boilerplates.

m Processes and automation

Installing multiple ELOas instances

It is possible to install multiple instances of ELO Automation Services for a single repository (ELO
Document Manager) in ELOenterprise environments. However, since ELOas is designed to use a
fixed GUID for its ruleset folder in the repository, the normal ELO server setup program cannot be
used to install multiple instances of ELOas in the same repository. It is not possible for multiple
ELOas instances to share the same base folder.

To install additional ELO Automation Services instances for a repository, proceed as follows.

1. Create a copy of the ELOas Base folder.

I - ED Administration
> @ Dropzone
ELO Background Images
> [l ELOapps
> @ ELOasBase
> @ ELOasBase2
ELOsiBase

> D;l ELOskBase

Fig.: Second ELOas Base folder

2. Copy the GUID of the new ELOas Base folder to a text editor.

a Processes and automation

V] Metadata X
Available forms < Basic Extra text Options Permissions Version history Additional information
Filter End of deletion period
Action definition End of retention period
Bestellung
Bulkimport Entry type @ Folder v
Contractgroup ~
Fontcolor System color -
Dokumentation
~ Sortorder Alphabetical -
ELO Business Solution
ELO Forms: Contact Enable quick preview of documentsin the folder

Translate shortname
ELO Forms: Contract

ELOScripts
FIRMA

Start point forreplication
Folder

Marketing
- ObjectID and GUID 5635§ 0E3B1BD4-2922-4130-6638-8627E02005B5)

Materialbestellung
Filed by Administrator
Projekt

Protokoll

E [:T E Expand keyword listautomatically @

Fig.: GUID of the second ELOas Base folder

3. Stop the instance of Tomcat where you want to install the new ELOas instance.

4. Go to the web application configuration directory (<tomcat
install>\conf\Catalina\localhost) and copy the application's XML file. In this example, as-
EXTENOL1.xml is copied to as-EXTENG2.xml.

Information

It is also possible to copy the ELOas configuration file to a different Tomcat server.

1. Open the copied .XML file in a text editor and change the entry for webappconfigdir and
Context path to accommodate the new ELOas instance. In this example, it would be:

<Context docBase="E:\ELO\prog\webapps\as.war" path="/as-EXTEN2" unpackWAR="true">
<Environment name="webappconfigdir" override="false" type="java.lang.String" value="E:\ELO

</Context>

2. Now navigate to the config directory as defined in the previous step. Copy the original
configuration directory for ELOas to create a new configuration directory for the new
instance.

Processes and automation

> ThisPC » SQL (E)

s # AN
*
'OKUS
'OKUS

ts

p2

ELO > config

~

Name Date modifie
AdminCensole 19.03.2020 14
am-eloam 19.03.2020 14
as-EXTEN 19.03.2020 14
as-EXTEN2 12.05.2020 08
dm-EXTEN 19.03.2020 14
elastic 19.03.2020 14

Fig.: Copied and renamed directory

3. Open the new directory, then open the config.xml file in a text editor.

Eﬂcmfgmmfﬂ

1 <?xml version="1.0" encoding="UTF-8"2>

2 <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
3 [H<properties>

4 <comment>Webapp properties</comment>

= <entry kev="password">52-247-139-10-8-11-59-34</entry>

6 <entry k "tempdir">E:\ELO\temp\as-EXTEN2\ELO-ELODOKRUSRV-3</entry>
7 <entry key="language">en</entry>

8 <entry keyv="user">ELO Service</entry>

9 <entry key="rootguid" (OE331BD4 -2922-4130-6638-8627E02005B5) /entry>
10 <entry key="url">http:)
11 ~</properties>

Fig.: Modified GUID for the second ELOas instance

named

in step 2:

. Change the rootguid entry so that the GUID is identical to that of the repository folder

. Open the logback.xml file in the same directory and define a different name for the log file.

. Start the ELO Application Server (Tomcat).

Processes and automation

V
ELO Application Server EI-O

Digital Office

Message: 0K, free: 35.1MB, total: 512.0MB

Applications

Path Display Name Running Sessions Commands

/as-EXTEN ELO Automation Services true 1] Start [Stop ‘ \ Reload | | Undeploy |
IIas-EXTENZ ELO Automation Services true 0 Start | Stop || Reload | | Undeploy | I

/host-manager Tomcat Host Manager Application true 0 Start [Stop ‘ \ Reload | I Undeploy |

[Refresh List |

Fig.: Second ELOas instance on the ELO server

1. In the Tomcat Server Manager, check that the new ELOas instance is running properly.

E Processes and automation

Installing ELOas libraries

ELO Automation Services contains a number of libraries in the default configuration. However, it is
recommended to install multiple JavaScript libraries to ensure maximum functionality. These
libraries are available separately and are updated regularly.

First, you need to import these libraries into your repository.

- @ Administration
> EB Dropzone
ELO Background Images
> D;I ELOapps
- ED ELOasBase
> II]DH'EI:E
Java
- El] JavaScript
@ aclu: ACL Utilities

i) addr: AddRights

B ht: Race Temnlates
Fig.: ELOas Base folder in the tree

Make sure that the libraries are not already installed in your repository. These JavaScript files are
stored in the following folder:

Administration//ELOas Base//JavaScript

If there are already JavaScript files in that folder, first make sure that they have not been
customized for your environment. If not, delete them before performing the update.

Install the ELOas libraries from the ELO SupportWeb at: http://www.forum.elo.com/script/20/
eloinst.html.

http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html
http://www.forum.elo.com/script/20/eloinst.html

	Table of contents
	Basics
	How ELOas works
	Search methods (index search, treewalk, task list, mailbox, timestamp)

	Rulesets
	Basics
	Rule processing

	Create ruleset via ELO Administration Console
	Advanced search
	Target forms for rules selection
	Interval control
	Includes
	Rules
	Error handling

	Options and error handling
	Pause rules
	Error message "Invalid Ruleset"
	Problem 1
	Problem 2

	Manual start of a ruleset
	Example
	Activating the ruleset
	Other notes
	Triggering rulesets asynchronously
	Triggering rulesets synchronously
	Permissions check
	Order of operations

	The rule structure
	General structure
	All entries in the <base> section
	All entries in the '<search>' section
	All entries in the '<rule>' section
	Changing permissions

	Notes
	Sample structure

	Programming
	Programming with ELO Automation Services
	Script execution
	Creating custom modules
	Lazy initialization

	ELOas JavaDoc
	Debugging
	Syntax errors in the script
	Logical or runtime errors

	Standard modules
	cnt: ELO Counter Access
	cnt: Available functions

	db:DB Access
	db: Available functions
	Imports
	Connection parameters
	JavaScript code

	dex: Document Export
	dex: Available functions
	dex: JavaScript code

	ix: IndexServer functions
	ix: Available functions

	wf: Workflow Utils
	wf: Available functions

	mail: Mail Utils
	mail: Available functions for reading a mailbox
	Available functions for sending e-mails

	fu: File Utils
	fu: Available functions

	run: Runtime Utilities

	Examples
	Example – Moving a document
	Example: e-mail folder monitoring
	General approach
	Establishing the connection
	Create ruleset

	Monitored processing
	Marking instead of deleting
	nextImap_GMAIL
	finalizeImap_GMAIL

	Example – migrating a document database
	Example - Treewalk for ELOas
	Introduction
	Usage example
	Runtime environment variables

	Example - Workflow processing

	Filing via ELO Dropzone
	ELOas filing via ELO Dropzone tiles
	Step by step

	Barcode
	Introduction
	Reading barcodes with the Softek library
	Barcodes formats in the Softek library
	Example for reading a QR code

	Reading barcodes with the ZXing library
	Barcodes formats in the ZXing library

	Creating barcodes with the ZXing library

	Debugger
	ELOas debugger
	Opening the program
	Configuration
	Editing a ruleset

	Debugger (Java FX)
	Opening the program
	Use with OpenJDK
	Displaying the debugger on high-resolution screens

	User interface
	Searching rule contents
	Status reports
	Program information

	Starting an ELOas rule
	Profiles
	Using ELOas debugger profiles
	Profile overview
	Information on the selected profile
	Editing profiles
	Editing direct rules
	Changing profiles

	Keyboard shortcuts
	Java libraries
	ELOas debugger on Linux

	Other topics
	Manual installation of ELOas
	Required files
	Preparing for installation
	Deploying the files
	Displaying the status page

	Installing multiple ELOas instances
	Installing ELOas libraries

