
ELO Flows Development

Flow component

3

3

8

29

Table of contents

Flow component

Component structure

Overview of ELO Flows components

Overview of annotations

2 ELO Flows Development

Flow component

Component structure

The ELO Flows component can initially provide one or more triggers, one or more services, or both.

All triggers and services can be configured. Data can be exchanged between the components via

keys. Each component provides extensive handling information for its triggers and services.

The component is configured in a graphical user interface. Custom settings can be made here. It is

programmed in Java using annotations in particular.

Data is exchanged via an internal JSON configuration object. The data is implemented in input and

output classes.

The function descriptions of the components are provided by integrating markdown files (.md).

Trigger implementation.

3 ELO Flows Development

Service implementation.

4 ELO Flows Development

Implementation options within a component.

5 ELO Flows Development

Implementation options within the Settings tab.

Data can be forwarded to the following components in a JSON configuration object via keys.

6 ELO Flows Development

7 ELO Flows Development

Overview of ELO Flows components

Below, all graphical components are addressed in examples with their corresponding annotations.

ELO Flows component

Each flow is based on components. Components can contain multiple elements. For example, a

component provides one or more triggers. These triggers then initiate additional actions in the

flow. These actions are realized via services. Services are also provided by components.

8 ELO Flows Development

Definition of the component class (here: CounterComponent):

Triggers

Triggers are used to call a flow.

If a component in a flow is used as the first component, it automatically provides triggers in the

ELO Flows administration area.

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

}

9 ELO Flows Development

Please note

Triggers are always defined in the component class.

Service

Services provide different functions in ELO Flows. If a component is not used as the first

component in ELO Flows, then it provides different services for selection. If multiple services are

available, they can also be grouped.

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

 @Trigger(displayName="Call document counter")

 @WebHook(endpoint="createCounter")

 public CounterTriggerData triggerCounter(@Config CounterTriggerData triggerData) {

 //Implementation

 }

 @Trigger(…)

 @Scheduled(…)

 public TriggerData otherTrigger(@Config TriggerData triggerData) {

 //Implementation

 }

}

10 ELO Flows Development

Please note

Services are always defined in the component class.

Input fields

The input fields are used to capture user data. The fields can have different types and also offer

suggestions for input. Data from previous components can also be used via keys via the input

fields. The input fields are transferred to a service @Service or trigger@Trigger, where they are

used for configuration tasks over the course of the flow.

The following types are possible:

String

Integer

Boolean

Object

Array

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

 @Service(…)

 public ServiceOutputData createCounter(SerivceInputData) {

 //Implementation

 }

}

•

•

•

•

•

11 ELO Flows Development

String input field (text)

The input fields for values of different types also include the configuration tree and a JSONata

editor.

To implement an input field, a class is declared that provides the fields via the annotation

@Property. This class is transferred to a service/trigger method as a parameter. The variable type

(String counterName under annotation @Property) determines the type of the field in the editor.

Integer input field

To implement an integer type input field, proceed in the same way as for a string input field. The

variable type, in our example postfix, is declared by the int type.

CounterInput.java

public class CounterInput {

 @Property(displayName="Counter name" description="Enter postfix and prefix for new counter")

 private String counterName; // Type string in input field editor

 //Implement getter and setter methods

}

CounterComponent.java

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

 @Service(name="CreateCounter")

 public CounterOutput createCounter(CounterInput input) {}

}

12 ELO Flows Development

Boolean input field

CounterInput.java

public class CounterInput {

 @Property(displayName="Postfix")

 private int postfix; //Type Integer in the input field editor

 //Implement getter and setter methods

}

CounterComponent.java

@Component(version = "0.0.1", namespace = "academy.training",

name = "Counter", displayName = "Document counter",

description = "Unique allocation of identification numbers")

public class CounterComponent {

 @Service(name="CreateCounter")

 public CounterOutput createCounter(CounterInput input) {}

}

13 ELO Flows Development

Object input field

If you need multiple input lines at once (including of different types), you can implement an Object

type input field. This allows you to combine multiple fields into an object.

The example shows implementation of the CounterObject class as an internal class.

CounterInput.java

public class CounterInput {

 @Property(displayName="Import counter")

 private boolean importCounter; //Type Boolean in the input field editor

 //Implement getter and setter methods

}

CounterComponent.java

@Component(version = "0.0.1", namespace = "academy.training",

name = "Counter", displayName = "Document counter",

description = "Unique allocation of identification numbers")

public class CounterComponent {

 @Service(name="CreateCounter")

 public CounterOutput createCounter(CounterInput input) {}

 }

}

public class CounterInput {

 @Property(displayName="Define counter", description="Define a counter. Name and initial value"

 private CounterObject counterObj;//Type CounterObject in the input field editor

14 ELO Flows Development

Array input field

If multiple fields of one type (string, Boolean, integer, or object) are required, they can be

combined into an array. In the example below, multiple object input fields are grouped.

 class CounterObject {

 @Property(displayName="Initial value", description="The initial value is optional. The default value is 1"

 @DisplayOptions(order = 2, suggestValue = true)

 private int value = 1;

 @Property(displayName="Counter name", description="Enter the counter name"

 @DisplayOptions(order = 1)

 private String counterName;

 //Implement getter and setter methods

 }

}

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

 @Service(name="CreateCounter")

 public CounterOutput createCounter(CounterInput input) {}

}

15 ELO Flows Development

Mandatory fields

All input fields can be marked as mandatory. The field name is then marked with an asterisk (*).

This prevents the user from leaving the input screen if these entries are missing.

public class CounterInput {

 @Property(displayName="Define counter", description="Define a counter with name and initial value"

 private CounterObject[] counterObjects;//Type CounterObject[] in the input field editor

 class CounterObject {

 //See object input field

 }

}

16 ELO Flows Development

Setting the attribute required to true in the Property annotation marks the field as mandatory.

Order, default field values

The fields can also be configured via the @DisplayOptions annotation. You can configure value

suggestions (suggestValue) or the order (order) of the fields here.

'Suggestions' tab

In all input fields, suggestion lists can be filled via the annotations @Lookup and @LookupProvider.

The function with the annotation @LookupProvider must be implemented in the main component

class @Component.

@Property(displayName="Counter name" description="Enter postfix and prefix

for new counter", required=true)

private String counterName; // Type string in input field editor

@Property(displayName="Postfix")

@DisplayOptions(order=2, suggestValue=true)

private int postfix = 6;

@Property(displayName="Prefix")

@DisplayOptions(order=1, size=2)

private String prefix = "Invoice";

17 ELO Flows Development

Field groups

The input fields can be combined into groups by topics. In the figure, the fields Prefix and Postfix

are combined into the group New counter.

public class CounterInput {

 @Property(displayName = "Counter name", required=true)

 @Lookup("getCounters")

 private String counterName;

}

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

 @LookupProvider("getCounters")

 public Map<String,String> getCounters() throws CounterException {

 HashMap<String,String> map = new HashMap<>();

 //Implementation

 return map;

 }

}

18 ELO Flows Development

19 ELO Flows Development

To group input fields, the annotations @PropertyGroups and @PropertyGroup are added to the class

declaration. The annotation @PropertyGroupRef is also added to the fields that are combined into a

group with the corresponding group name.

@PropertyGroups(@PropertyGroup(displayName="New counter", name="counterGroup"))

public class CounterInput {

 @Property(displayName = "Counter name", required = true, description = "Select a counter name"

 @Lookup("getCounters")

 private String counterName;

 @Property(displayName = "Prefix", description = "Only in combination with counter name")

 @PropertyGroupRef("countergroup")

 @DisplayOptions(order = 1)

 private String prefix;

 @Property(displayName = "Postfix", description = "Only in combination with counter name")

 @PropertyGroupRef("countergroup")

 @DisplayOptions(order = 2, suggestValue = true)

20 ELO Flows Development

Service groups

Different services, see also the ELO objects and metadata component, can be combined into

groups.

To group the services, the services are implemented in individual classes. The annotation

@ComponentServices is added to these classes. For the groups to be shown, at least two groups

have to be defined (i.e. two classes with @ComponentServices and contained @Services). The

annotation @ComponentServices must always refer to the main component class (in our case

CounterComponent) via the component attribute.

 private int postfix = 6;

}

@Component(version = "0.0.1", namespace = "academy.training", name = "Counter", displayName = "Document counter"

public class CounterComponent {

}

21 ELO Flows Development

Indexserver connection

The connection to the ELO Indexserver can be established automatically via the annotation

@Connection and @ConnectionRequired. The connection to the ELOix is declared via the annotation

@Connection in the IXConnection type variable and can be used in all methods via the annotation

@ConnectionRequired.

@ComponentServices(component = CounterComponent.class, name = "CounterServices", displayName = "Manage counters"

public class CounterServices {

 @Service(name="CreateCounter")

 public CounterOutput createCounter(CounterInput input) {}

 @Service(name="ChooseCounter")

 public CounterOutput chooseCounter(CounterInput input) {}

}

@ComponentServices(component = CounterComponent.class, name = "CounterServices", displayName = "Import counters"

public class CounterServicesImportGroup {

 @Service(name="ImportCounter")

 public CounterImportOutput importCounter(CounterImportInput input) {}

 @Service(name="FindImportCounter")

 public CounterImportOutput findImportCounter(CounterImportInput input) {}

}

public class CounterComponent {

 @Connection

 IXConnection ixConnect;

 @LookupProvider("getCounters")

 @ConnectionRequired

 public Map<String,String> getCounters() {

 HashMap<String,String> map = new HashMap<>();

 //Implementation

 return map;

 }

}

22 ELO Flows Development

Component information

The documentation can be integrated in different positions, such as the service or component

description, via the annotation @Guide. First, you will have to file the relevant markdown file in the

corresponding project structure, which is then referenced later in the solution implementation.

Please note

The markdown files are filed to the intended project structure (see figure). Otherwise, the

documentation cannot be read or shown.

23 ELO Flows Development

The following combinations with other annotations are possible:

Information on a component (@Component and @Guide). Visible in both the service and the

trigger selection view.

1.

24 ELO Flows Development

25 ELO Flows Development

Information on a service (@Service and @Guide).2.

26 ELO Flows Development

Information on a trigger (@Trigger and @Guide)3.

27 ELO Flows Development

28 ELO Flows Development

Overview of annotations

An overview of the annotations available to us during development.

@Component

Name Description

namespace Namespace (package in project).

name Component name.

version Current version.

displayName Display name that is shown in the ELO Flows administration area.

iconUri Path to the component icon, default /assets/icon.png.

description
Brief description of the component shown when the component is selected. More

information is entered via the annotation @Guide in the component.

@Service

The service provided in a component.

Name Description

name Name of service.

displayName Display name that is shown in the ELO Flows administration area.

package ;

public abstract @interface Component {

 public abstract String namespace();

 public abstract String name();

 public abstract String version();

 public abstract String displayName();

 public abstract String iconUri() default "/assets/icon.png";

 public abstract String description() default "";

}

com.elo.flows.api.components.annotations

java.lang.

java.lang.

java.lang.

java.lang.

java.lang.

java.lang.

package ;

public abstract @interface Service {

 public abstract String name() default "";

 public abstract String displayName() default "";

 public abstract String description() default "";

}

com.elo.flows.api.components.annotations

java.lang.

java.lang.

java.lang.

29 ELO Flows Development

Name Description

description
Short name of the service shown when the service is selected. More information is

entered via the annotation @Guide in the service.

@Trigger, @WebHook

Trigger that can be used to start a flow.

Name Description @Trigger

name Name of the trigger.

displayName Display name that is shown in the ELO Flows administration area.

description
Short name of the trigger shown when the trigger is selected. More information is

entered via the annotation @Guide in the trigger.

Name Description @WebHook

endpoint Identifier for the call.

@Config

Used in a trigger (trigger method) as a parameter. Indicates that configurations can be made in the

trigger on the Settings tab.

@Synchron

Indicates a synchronous trigger.

package ;

public abstract @interface Trigger {

 public abstract String name() default "";

 public abstract String displayName() default "";

 public abstract String description() default "";

}

package ;

 public abstract @interface WebHook {

 public abstract String endpoint() default "";

}

com.elo.flows.api.components.annotations

java.lang.

java.lang.

java.lang.

com.elo.flows.api.components.annotations

java.lang.

package ;

public abstract @interface Config {

}

com.elo.flows.api.components.annotations

30 ELO Flows Development

@Guide

Enables integration of information files in markdown format.

@Property

Field on the Settings tab.

Name Description

displayName Display name that is shown in the ELO Flows administration area.

description Brief description of the input field shown next to the (i) as a tooltip.

required Indicates whether the field is mandatory.

@DisplayOptions

Additional configuration options for input fields.

package ;

public abstract @interface Synchron {

 public abstract Class<? extends Object>[] resultClasses() default {};

}

com.elo.flows.api.components.annotations

java.lang. java.lang.

package ;

public abstract @interface Guide {

 public abstract String value();

}

com.elo.flows.api.components.annotations

java.lang.

package ;

public abstract @interface Property {

 public abstract String displayName() default "";

 public abstract String description() default "";

 public abstract boolean required() default false;

}

com.elo.flows.api.schema.annotations

java.lang.

java.lang.

package ;

public abstract @interface DisplayOptions {

 public abstract int size() default (int) 1;

 public abstract int order() default (int) 2147483647;

 public abstract boolean hidden() default false;

com.elo.flows.api.schema.annotations

31 ELO Flows Development

Name Description

size Size of the input field.

order In case of multiple input fields in a group, you can choose an order for display.

hidden A field can be marked as hidden.

suggestValue The value of the @Property variables is automatically applied to the input field.

@Lookup

Suggestions tab in the input field. Used with the @Property annotation. You also have to make sure

that a method is implemented via the annotation @LookupProvider that provides the content for

the suggestions.

@LookupProvider

Suggestions in the input field. Used in combination with the @Lookup annotation.

@Connection

ELO Indexserver connection.

 public abstract boolean suggestValue() default false;

}

package ;

public abstract @interface Lookup {

 public abstract String value();

}

com.elo.flows.api.schema.annotations

java.lang.

package ;

public abstract @interface LookupProvider {

 public abstract String value();

}

com.elo.flows.api.components.annotations

java.lang.

package ;

public abstract @interface Connection {

 public abstract Class<?> provider() default Void;

}

com.elo.flows.api.components.annotations

java.lang. java.lang.

32 ELO Flows Development

@ConnectionRequired

Used with @Connection, for example if the connection to the ELO Indexserver is used in a method.

@PropertyGroups, PropertyGroup, PropertyGroupRef

The annotations are used to combine the different services into groups on the Services tab.

Name Description

displayName Display name that is shown in the ELO Flows administration area.

name Group name.

collapsed This group can be opened when making a selection.

description
Brief description of the group. Shown next to the group name when the group is

open.

order If there are multiple settings in the group, you can determine the order.

package ;

 public abstract @interface ConnectionRequired {

}

com.elo.flows.api.components.annotations

package ;

public abstract @interface PropertyGroups {

 public abstract PropertyGroup[] value();

}

package ;

public abstract @interface PropertyGroup {

 public abstract String displayName();

 public abstract String name();

 public abstract boolean collapsed() default false;

 public abstract String description() default "";

 public abstract int order() default (int) 2147483647;

}

com.elo.flows.api.schema.annotations

com.elo.flows.api.schema.annotations.

com.elo.flows.api.schema.annotations

java.lang.

java.lang.

java.lang.

package ;

public abstract @interface PropertyGroupRef {

 public abstract String value();

}

com.elo.flows.api.schema.annotations

java.lang.

33 ELO Flows Development

	Table of contents
	Flow component
	Component structure
	Overview of ELO Flows components
	ELO Flows component
	Triggers
	Service
	Input fields
	String input field (text)
	Integer input field
	Boolean input field
	Object input field
	Array input field
	Mandatory fields

	Order, default field values
	'Suggestions' tab
	Field groups
	Service groups
	Indexserver connection
	Component information

	Overview of annotations
	@Component
	@Service
	@Trigger, @WebHook
	@Config
	@Synchron
	@Guide
	@Property
	@DisplayOptions
	@Lookup
	@LookupProvider
	@Connection
	@ConnectionRequired
	@PropertyGroups, PropertyGroup, PropertyGroupRef

